

Online Continual Learning in Keyword Spotting for Low-Resource Devices via Pooling High-Order Temporal Statistics

Umberto Michieli, Pablo Peso Parada, Mete Ozay

Samsung Research UK

1) Motivation

2) Setup

3) Our Method: TAP-SLDA

4) Main Results

5) Conclusion

1) Motivation

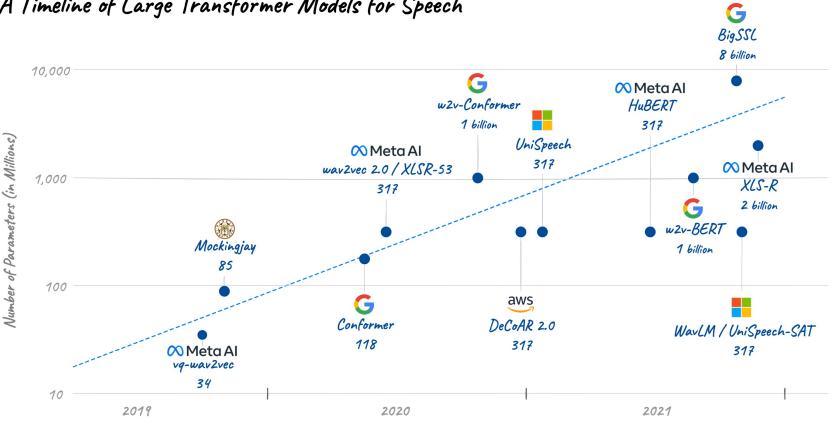
2) Setup

3) Our Method: TAP-SLDA

4) Main Results

5) Conclusion

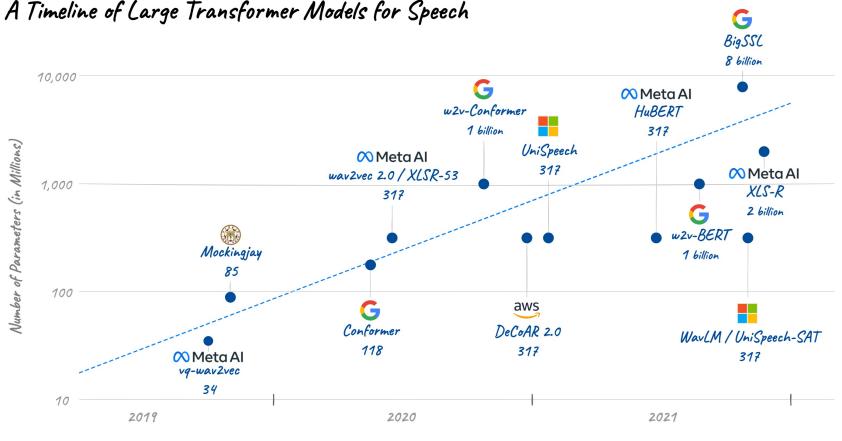
Speech models are getting more powerful but also much larger!



A Timeline of Large Transformer Models for Speech

jonathanbgn.com

Speech models are getting more powerful but also much larger!



Cannot fine-tune these models on low-resource devices

jonathanbgn.com

Users of smart devices want on-device personalization

Example use-cases:

- Add custom commands to virtual assistants
- Add custom wake-up words to virtual assistants

Without sharing any data with the server

→ Need for efficient and on-device personalization of keywords spotting (KWS) models

1) Motivation

2) Setup

3) Our Method: TAP-SLDA

4) Main Results

5) Conclusion

APPLICATION: Personalized Keywords Spotting

TASK: Class-Incremental **O**nline **C**ontinual **L**earning for **E**mbedded devices (EOCL)

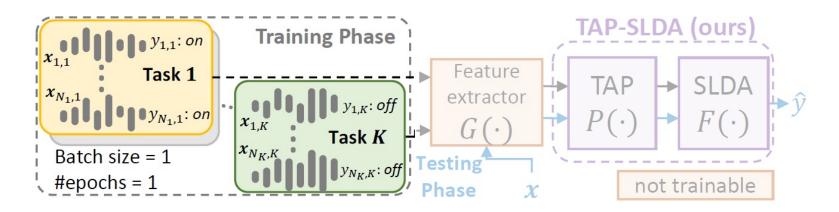
DESIDERATA:

- Learn new concepts without forgetting old ones → Continual Learning
- Learn from a stream of data (samples are not stored on device) \rightarrow Online
- Efficient update: targeting limited-resource devices → Embedded
 - Frozen backbone
 - Update via small batch size, as data is collected by the user
 - Limited number of training parameters

1) Motivation

- 2) Setup
- 3) Our Method: TAP-SLDA
- 4) Main Results
- 5) Conclusion

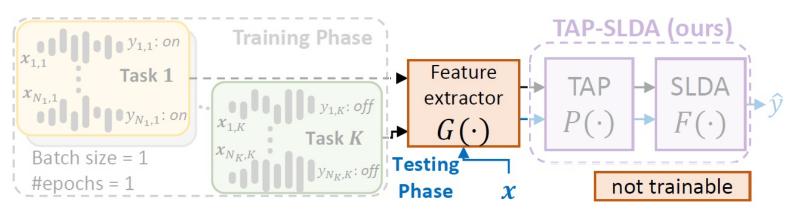
3) Our Method



Three main components:

1. Feature Extractor

 \rightarrow pre-trained on server on public data and frozen



3) Our Method

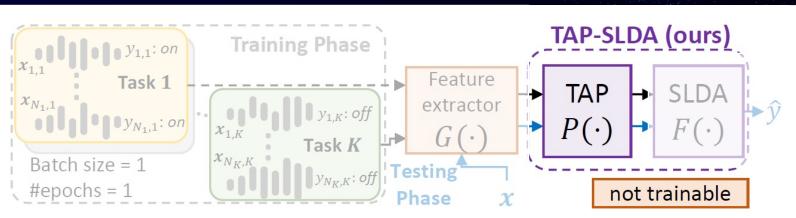
Three main components:

1. Feature Extractor

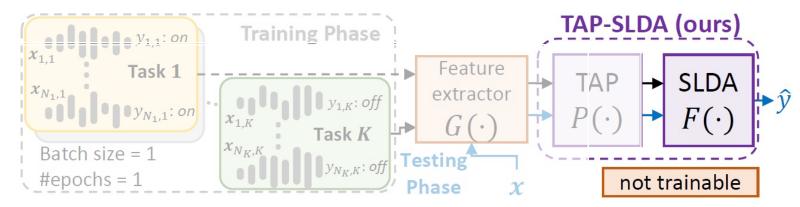
 \rightarrow pre-trained on server on public data and frozen

- 2. Temporal-Aware Pooling (TAP) → concatenation of first R statistical moments (e.g., R=5)
 - Richer feature space to extract cues from a single-epoch training
 - Increased accuracy
 - Increased robustness

 $P(g) = \left| \left| \left(\mu, E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}, \left| \right|_{r=3}^R E_{\mathcal{G}} \left[\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right]^r \right) \right|_{r=3} \right|_{r=3} \left| \left| \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right]^r \right) \right|_{r=3} \right|_{r=3} \left| \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right]^r \right) \right|_{r=3} \left| \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right]^r \right) \right|_{r=3} \left| \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right]^r \right) \right|_{r=3} \left| \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right]^r \right) \right|_{r=3} \left| \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right]^r \right) \right|_{r=3} \left| \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right]^r \right) \right|_{r=3} \left| \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right)^r \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right)^r \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right)^r \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right)^r \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right)^r \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right)^r \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right)^r \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right]^r \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right]^r \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right]^r \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}} \right|_{r=3} \left| \left(\frac{g - \mu}{E_{\mathcal{G}} \left$



3) Our Method



Three main components:

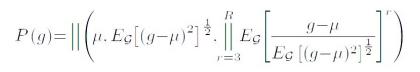
1. Feature Extractor

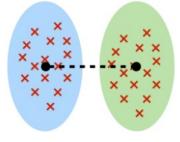
→ pre-trained on server on public data and frozen

- 2. Temporal-Aware Pooling (TAP) → concatenation of first R statistical moments (e.g., R=5)
 - Richer feature space to extract cues from a single-epoch training
 - Increased accuracy
 - Increased robustness
- Classifier → lightweight online continual learning method
 → We use SLDA [1] on the enriched feature space

SLDA estimates a Gaussian model for each class over the feature space with a class-wise mean (prototype) and shared-across-classes variance

- Online estimate of covariance
- Shared covariance across classes

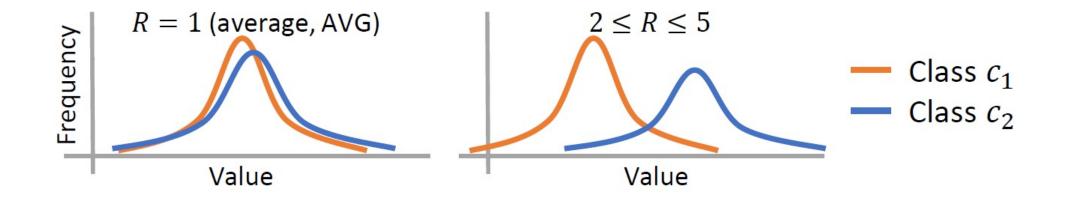




[1] Hayes, Tyler L., and Christopher Kanan. "Lifelong machine learning with deep streaming linear discriminant analysis." CVPRW 2020

3) Our Method: Intuition

We plot the distribution of statistical moments of features extracted from class1 or class2 :



Samsung Research

 \rightarrow Features of different classes have similar distribution of 1st moments, while...

 \rightarrow ... higher moments capture the difference

1) Motivation

2) Setup

3) Our Method: TAP-SLDA

4) Main Results

5) Conclusion

Datasets

- **GSC-V2:** 35 English words
- MSWC: we picked the 5 most represented languages (*en*, *de*, *fr*, *ca*, *rw*) and create 3 micro-sets with different number of keywords N={25, 50, 100}. Splits are available at [2]

Metrics

- Acc: assesses the final model performance on all classes
- CL metrics: BwT (\uparrow), Forgetting (\downarrow), Plasticity (\uparrow),
- Relative comparison: $(Acc_2 Acc_1)/(100 Acc_1)$

TAP-SLDA (ours) outperforms competing approaches on 6 architectures:

	W2V-B			W2V-L			Emf-B			HB-B			HB-L				HB-XL							
	Acc	BwT	Forg	Pla	Acc	BwT	Forg	Pla	Acc	BwT	Forg	Pla	Acc	BwT	Forg	Pla	Acc	BwT	Forg	Pla	Acc	BwT	Forg	Pla
FT	$2.5_{\pm 1.0}$	1.2	98.5	100	$2.5_{\pm 1.0}$	1.3	98.5	100	$2.7_{\pm 0.8}$	1.5	97.6	99.8	$2.5_{\pm 1.0}$	1.2	98.5	100	$2.5_{\pm 1.0}$	1.2	98.5	100	$2.5_{\pm 1.0}$	1.2	98.5	100
PRCP [10]	$2.5_{\pm 1.0}$	1.2	98.4	100	$2.5_{\pm 1.0}$	1.3	98.4	100	$2.9_{\pm 0.7}$	2.2	95.8	97.5	$2.5_{\pm 1.0}$	1.4	98.4	100	$2.5_{\pm 1.0}$	1.2	98.4	100	$2.6_{\pm 1.0}$	1.3	98.4	100
SNB [27]	$3.7_{\pm 0.0}$	6.5	38.6	15.7	$9.4_{\pm 2.4}$	9.2	36.1	16.6	$7.2_{\pm 0.0}$	13.1	24.8	22.8	$77.4_{\pm 0.0}$	80.9	18.1	84.2	$6.5_{\pm 0.0}$	12.0	37.1	23.7	$57.9_{\pm 0.0}$	60.3	23.8	65.2
SOvR [10]	1.8 ± 0.0	6.2	39.6	14.5	1.8 ± 0.0	6.2	31.6	15.8	4.9 ± 0.0	7.3	24.4	14.5	$19.1_{\pm 0.0}$	29.8	41.2	42.5	14.0 ± 0.0	21.8	34.8	32.9	$15.7_{\pm 0.0}$	22.6	35.3	33.8
NCM [23]	$67.5_{\pm 6.0}$	74.0	13.2	77.3	$69.5_{\pm 7.0}$	76.0	12.1	80.0	$8.8_{\pm 0.0}$	14.1	23.6	22.0	$83.9_{\pm 0.0}$	86.0	8.2	89.1	$46.7_{\pm 0.0}$	55.4	22.8	62.4	62.5 ± 0.0	66.7	17.3	72.2
SLDA [18]	$82.4_{\pm 0.1}$	84.2	8.0	87.0	81.6 ± 0.1	83.8	8.3	86.8	23.2 ± 0.0	32.9	23.7	41.9	94.2 ± 0.0	94.9	3.8	96.2	$85.5_{\pm 0.0}$	88.2	8.3	90.8	$93.3_{\pm 0.0}$	94.1	5.1	95.4
SQDA [26]	80.6 ± 2.5	78.2	5.7	81.2	$80.5_{\pm 2.4}$	76.9	5.1	80.6	24.3 ± 0.7	21.9	17.3	31.5	$90.0_{\pm 3.4}$	87.8	2.8	90.0	67.4 _{±4.4}	59.4	4.4	64.8	$83.0_{\pm 2.1}$	73.9	0.0	76.8
TAP-SLDA (ours)	89.9 ±0.0	91.8	5.6	93.7	90.0 _{±0.0}	91.7	5.4	93.4	50.8 _{±0.3}	58.8	20.3	65.8	95.7 _{±0.0}	96.0	3.0	96.9	90.8 _{±0.0}	91.8	6.1	93.6	95.5 _{±0.0}	95.8	3.4	96.6
iCaRL [6]	$76.9_{\pm 1.0}$	79.1	14.7	83.6	$73.6_{\pm 1.8}$	78.0	17.4	83.5	$18.2_{\pm 0.3}$	26.9	28.8	44.7	93.7 _{±0.1}	94.6	4.2	96.7	$\overline{78.5}_{\pm 0.5}$	83.1	12.8	85.1	$9\overline{2.9}_{\pm 0.3}$	93.8	5.3	95.5
Avg	47.5	49.6	33.5	73.0	48.1	50.1	32.5	73.7	15.1	19.3	38.0	46.2	64.3	65.9	28.6	88.5	44.1	46.9	34.6	71.6	56.8	57.7	30.4	80.8

→ The temporal-aware enriched feature space provides useful temporal characteristics to the Gaussian modelling

TAP improves every OCL method:

TAP+	W2V-B	W2V-L	Emf-B	HB-B	HB-L	HB-XL	Avg
FT	5.4	6.1	2.9	2.7	2.7	2.7	3.8 (+1.2)
PRCP	3.5	4.6	3.0	2.8	2.8	2.9	3.3 (+0.7)
SNB	3.9	7.1	9.3	84.1	6.9	59.9	28.5 (+2.3)
SOvR	51.3	60.9	5.8	54.3	14.9	49.6	39.5 (+29.9)
NCM	78.2	79.8	12.1	87.2	44.5	84.9	64.5 (+8.0)
CBCL	75.9	77.3	12.0	88.7	48.0	86.1	64.7 (+8.2)
SLDA	89.9	90.0	50.8	95.7	90.8	95.5	85.5 (+8.8)
SQDA	85.5	84.0	48.7	88.8	67.1	82.7	76.1 (+5.1)
iCaRL	82.9	85.7	31.0	90.9	76.9	90.8	76.4 (+4.1)
Avg	52.9	55.1	19.5	66.1	39.4	61.7	

TAP improves every OCL method:

TAP+	W2V-B	W2V-L	Emf-B	HB-B	HB-L	HB-XL	Avg
FT	5.4	6.1	2.9	2.7	2.7	2.7	3.8 (+1.2)
PRCP	3.5	4.6	3.0	2.8	2.8	2.9	3.3 (+0.7)
SNB	3.9	7.1	9.3	84.1	6.9	59.9	28.5 (+2.3)
SOvR	51.3	60.9	5.8	54.3	14.9	49.6	39.5 (+29.9)
NCM	78.2	79.8	12.1	87.2	44.5	84.9	64.5 (+8.0)
CBCL	75.9	77.3	12.0	88.7	48.0	86.1	64.7 (+8.2)
SLDA	89.9	90.0	50.8	95.7	90.8	95.5	85.5 (+8.8)
SQDA	85.5	84.0	48.7	88.8	67.1	82.7	76.1 (+5.1)
iCaRL	82.9	85.7	31.0	90.9	76.9	90.8	76.4 (+4.1)
Avg	52.9	55.1	19.5	66.1	39.4	61.7	

_

_

TAP outperforms other pooling schemes:

	W2V-B	W2V-L	Emf-B	HB-B	HB-L	HB-XL	Avg
AVG [29]	82.4	81.6	23.2	94.2	85.5	93.3	76.7
MAX [30]	87.7	88.3	34.9	94.8	87.2	94.1	81.2
MIX (50%) [31]	87.8	87.3	31.1	94.7	87.3	94.0	80.4
STOCH [32]	80.9	77.6	24.6	85.3	64.5	77.9	68.4
L2 [36]	79.0	79.7	17.4	92.9	74.4	89.7	72.2
L3 [36]	79.3	81.2	15.9	92.4	70.4	89.1	71.4
RAP (10%) [33]	86.5	86.9	36.3	94.8	87.5	93.8	81.0
AVGMAX [34]	89.1	89.6	44.8	95.2	89.1	94.7	83.8
iSQRT-COV [37]	80.3	80.3	55.1	92.4	83.8	90.3	80.4
TSDP [35]	83.9	83.6	32.4	94.4	84.9	93.9	78.9
TSTP [35]	87.4	87.6	39.1	95.1	88.0	94.5	82.0
TAP (ours)	90.0	90.0	50.8	95.7	90.8	95.5	85.5
Avg	84.5	84.5	33.8	93.5	82.8	91.7	

Larger feature space is *not* all we need:

 Δ_{fs} : increase of pooled feature size

	W2V-B	W2V-L	Emf-B	HB-B	HB-L	HB-XL	Avg	Δ_{fs}
AVG	82.4	81.6	23.2	94.2	85.5	93.3	76.7	1
MAX	87.7	88.3	34.9	94.8	87.2	94.1	81.2	1
RAP 5%	85.7	85.8	35.1	94.5	86.8	93.8	80.3	26.8
RAP 10%	86.5	86.9	36.3	94.8	87.5	93.8	81.0	53.5
RAP 20%	85.7	85.9	36.3	94.5	86.8	93.8	80.5	107
MAXW ₂	87.7	88.3	34.9	94.8	87.2	94.1	81.2	5
MAXW ₅	85.8	86.5	34.9	94.7	87.1	93.9	80.5	11
MAXW ₁₀	85.6	86.1	35.3	94.7	86.7	93.7	80.3	21
FLAT	85.1	86.2	24.6	94.3	85.7	93.5	78.2	535
TAP(R=2)	87.4	87.6	39.1	95.1	88.0	94.5	82.0	$\overline{2}$
TAP $(R=3)$	89.3	89.2	47.3	95.5	89.8	95.4	84.4	3
TAP $(R=4)$	90.0	90.0	49.7	95.6	90.4	95.5	85.2	4
TAP (R=5)	90.0	90.0	50.8	95.7	90.8	95.5	85.5	5
TAP (R=6)	90.1	90.2	47.8	95.7	89.9	95.5	84.9	6

TAP only adds minimal overhead:

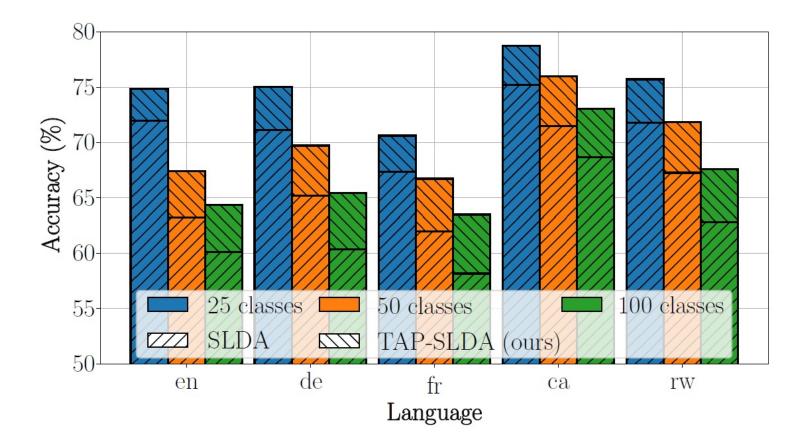
TAP+	R = 1		R=2		R = 3		R = 4		R = 5		R = 6	
		Δ_p										
FT	1.6	0.01	1.5	0.01	1.5	0.02	1.5	0.02	3.8	0.03	2.6	0.04
NCM	52.1	0.01	62.8	0.01	63.5	0.02	64.0	0.02	64.5	0.03	56.7	0.04
SLDA	76.7	0.10	82.0	0.10	84.4	0.11	85.2	0.12	85.5	0.12	84.9	0.13

 Δ_p : increase of parameters percentage over the backbone

_

TAP enhances personalization to other languages:

HuBERT-Base model pre-trained on English data only and adapted to recognize keywords in different languages



1) Motivation

2) Setup

3) Our Method: TAP-SLDA

4) Main Results

5) Conclusion

New task: online continual learning for KWS models targeting low-resource devices with limited computational and storage capability

New method: TAP-SLDA, a parameter-efficient online continual learning method

TAP-SLDA features:

- New **temporal-aware pooling** scheme based on the first 5 moments of extracted features
- Lightweight solution: frozen feature extractor + class-conditional Gaussian modelling of feature space
- Extraction of high-order statistical moments of the embedded features of input samples
- **Robust** results in a variety of scenarios on several backbones

Thank you!

Samsung Research