Samsung Research

Online Continual Learning for Robust Indoor Object Recognition

Umberto Michieli, Mete Ozay

Samsung Research UK


Samsung Research

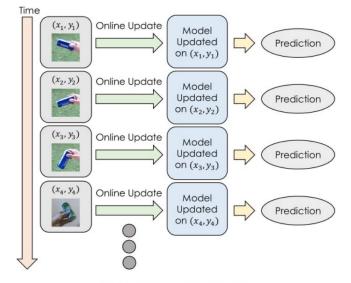
1) Setup

2) Our Method: RobOCLe

3) Main Results

4) Conclusion

TASK: Class-Incremental Online Continual Learning

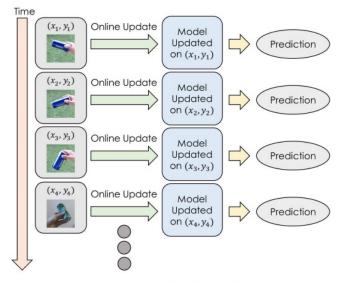

DESIDERATA:

- Robust to Test Time Variations
- Data-Efficient (Few-Shot Training)
- Targeting Limited-Resource Devices

2) Our Method

Three main components:

1. Feature Extractor → pre-trained on server on public data and frozen



(b) Streaming Learning

2) Our Method

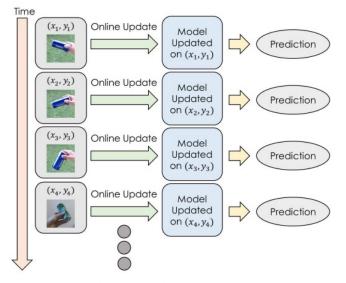
- 1. Feature Extractor → pre-trained on server on public data and frozen
- 2. Pooling scheme \rightarrow concatenation of first R statistical moments (e.g., R=3)
 - Richer feature space to extract cues from a single-epoch training
 - Increased accuracy
 - Increased robustness

$$P\left(g\right) = \left| \left| \left(\mu, E_{\mathcal{G}}\left[(g-\mu)^2 \right]^{\frac{1}{2}}, \prod_{r=3}^R E_{\mathcal{G}}\left[\frac{g-\mu}{E_{\mathcal{G}}\left[(g-\mu)^2 \right]^{\frac{1}{2}}} \right]^r \right), \right.$$

(b) Streaming Learning

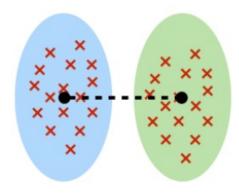
2) Our Method

Three main components:

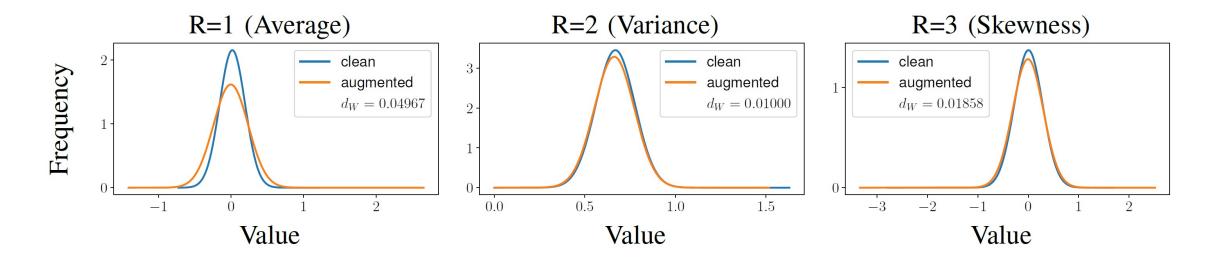

- **1.** Feature Extractor \rightarrow pre-trained on server on public data and frozen
- 2. Pooling scheme \rightarrow concatenation of first R statistical moments (e.g., R=3)
 - Richer feature space to extract cues from a single-epoch training
 - Increased accuracy
 - Increased robustness

$$P(g) = \left\| \left(\mu, E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}, \prod_{r=3}^R E_{\mathcal{G}} \left[\frac{g - \mu}{E_{\mathcal{G}} \left[(g - \mu)^2 \right]^{\frac{1}{2}}} \right]^r \right),\right\|$$

Classifier → lightweight online continual learning method
 → We use SLDA [1] on the enriched feature space


SLDA estimates a Gaussian model for each class over the feature space with a class-wise mean (prototype) and shared-across-classes covariance

- Online estimate of covariance
- Shared covariance across classes



(b) Streaming Learning

[1] Hayes, Tyler L. et al. "Lifelong machine learning with deep streaming linear discriminant analysis." CVPRW 2020.

We plot the distribution of statistical moments of features extracted from clean or augmented samples and we compute their Wasserstein distance (d_W) :

Samsung Research

First statistical moment suffer from more variability than second and third ones

 \rightarrow Higher order moments improve robustness/resilience and invariance to domain shift.

TABLE I

ACC ON SAME-DOMAIN OPENLORIS DATA ON 16 BACKBONES AND 10 OCL BASELINES. MN: MOBILENET, EN: EFFICIENTNET, RN:RESNET.

	MN-S	MN-L	EN-B0	EN-B1	RN18	RN34	RN50	RN101	RN152	Swin-T	Swin-S	Swin-B	ViT-B16	ViT-B32	ViT-L16	ViT-L32	Avg
FT	84.22	93.38	96.14	97.89	83.35	83.84	94.19	95.43	94.33	95.68	96.07	96.04	59.07	67.27	92.47	62.85	87.01
PRCPT [4]	74.49	89.75	94.02	95.94	80.47	78.58	92.18	91.24	92.35	93.40	94.21	94.46	48.70	58.51	85.62	55.19	82.44
SNB [67]	31.12	37.84	77.96	83.91	1.51	0.84	0.00	0.00	0.00	87.30	86.94	86.14	3.51	4.60	42.90	5.76	34.40
SOvR [4]	37.42	60.17	73.92	80.65	34.65	31.77	71.54	64.57	67.68	80.03	79.01	77.92	4.91	18.83	62.61	22.02	54.23
NCM/CBCL [64], [25]	72.89	81.83	85.94	88.34	79.69	80.47	84.62	83.98	84.12	87.77	87.54	87.94	64.99	63.38	79.47	68.09	80.07
SQDA [66]	77.71	55.84	2.45	6.16	81.59	81.36	5.66	24.24	1.64	83.84	62.53	63.27	8.91	15.74	3.53	7.50	36.37
iCaRL [63]	91.76	95.54	97.60	98.06	92.76	93.21	97.18	97.47	97.63	97.65	97.57	97.98	86.43	89.61	95.52	89.61	94.72
iCaRL (2pc) [63]	89.29	95.09	97.07	96.43	91.21	92.34	96.50	96.99	96.79	97.13	97.13	97.68	79.41	82.49	93.34	81.78	92.54
SLDA [20]	95.57	97.93	98.83	98.98	95.01	95.47	99.00	99.10	99.13	98.25	98.18	98.85	96.74	96.20	98.69	97.04	97.69
RobOCLe _{SLDA} (ours)	98.20	99.37	99.70	99.72	97.65	97.96	99.69	99.78	99.78	99.28	99.31	99.65	99.16	99.02	99.73	99.33	99.21
$(\Delta_R \ [\%])$	(+59.5)	(+69.4)	(+74.8)	(+72.3)	(+52.8)	(+54.9)	(+69.1)	(+75.6)	(+75.2)	(+58.6)	(+62.0)	(+69.9)	(+74.2)	(+74.3)	(+79.6)	(+77.4)	(+65.8)

We evaluate on **OpenLORIS dataset** with **16 backbone architectures** against **10** OCL competitors.

 \rightarrow RobOCLe outperforms all baseline competitors in every scenario.

99.21% accuracy on average, compared to 97.69% of the runner-up method.

TABLE II

ACCURACY ON REAL OTHER-DOMAIN FEW-SHOT DATASETS ON RESNETS AND VITS BACKBONES.

		OpenLORIS-small RN50 RN101 RN152 ViT-B16 ViT-B32 ViT-L16 ViT-L32 Avg									F-	SIOL-	310 (5-sh	nots)					F-9	SIOL-3	10 (10-s	hots)		
	RN50	RN101	RN152	ViT-B16	ViT-B32	ViT-L16	ViT-L32	Avg	RN50	RN101	RN152	ViT-B16	ViT-B32	ViT-L16	ViT-L32	Avg	RN50	RN101	RN152	ViT-B16	ViT-B32	ViT-L16	ViT-L32	Avg
FT	13.64	14.81	16.05	2.08	2.08	2.51	2.08	7.61	40.72	27.65	31.96	8.56	9.87	19.67	8.63	21.01	30.25	26.75	32.83	5.00	7.33	14.42	7.25	17.69
PRCPT [4]	27.45	21.68	21.36	2.08	2.18	6.64	2.08	11.92	32.16	24.12	34.31	4.84	5.42	7.39	4.84	16.15	38.25	24.42	32.75	5.17	5.17	9.75	4.92	17.20
SNB [67]	0.57	0.58	0.25	3.10	4.19	23.52	5.16	5.34	4.90	2.94	6.47	11.31	9.28	24.90	7.84	9.66	6.00	0.83	1.92	6.92	6.42	20.58	15.42	8.30
SOvR [4]	46.72	45.96	43.76	9.33	10.31	29.21	17.24	28.93	80.39	63.01	64.97	18.69	8.17	54.58	14.51	43.47	76.33	63.67	67.50	17.75	7.00	50.08	10.00	41.76
SQDA [66]	37.65	47.08	46.10	37.34	36.20	41.41	36.41	40.31	93.73	94.18	91.70	96.27	94.44	95.03	93.40	94.11	94.67	96.00	95.50	96.00	96.92	96.42	96.42	95.99
iCaRL [63]	51.29	51.04	50.33	33.60	33.57	42.76	32.58	42.17	58.95	66.21	63.53	34.90	40.39	38.50	32.16	47.81	68.83	77.75	76.50	47.08	48.75	51.42	44.08	59.20
iCaRL (2pc) [63]	49.08	47.28	47.93	31.83	28.92	40.89	31.73	39.67	58.04	67.12	64.12	37.25	37.65	38.69	32.88	47.96	69.33	78.33	76.33	46.17	49.83	50.50	45.33	59.40
NCM/CBCL [64], [25]	50.59	48.31	47.68	34.58	32.20	40.57	34.28	41.17	94.90	93.53	93.66	91.96	92.22	94.84	91.70	93.26	93.83	94.42	94.33	93.58	96.17	96.67	94.17	94.74
RobOCLe _{NCM} (ours)	55.67	54.84	54.89	36.39	32.74	41.23	35.12	44.41	95.90	95.37	94.85	94.33	93.91	95.70	92.99	94.72	95.86	96.81	96.51	95.58	97.00	97.69	95.71	96.45
$(\Delta_R \ [\%])$	(+10.3)	(+12.6)	(+13.8)	(+2.8)	(+0.8)	(+1.1)	(+1.3)	(+5.5)	(+19.7)	(+28.5)	(+18.8)	(+29.5)	(+21.6)	(+16.)	(+15.6)	(+21.7)	(+32.9)	(+42.8)	(+38.5)	(+31.2)	(+21.7)	(+30.6)	(+26.4)	(+32.6)
SLDA [20]	50.26	49.91	50.41	43.96	41.50	45.51	42.93						95.62	94.64	95.23					99.00	98.17	98.33		97.90
RobOCLe _{SLDA} (ours)	51.33	51.44	52.42	44.73	42.86	45.22	43.07	47.29	96.12	96.98	95.84	96.96	95.80	95.38	94.73	95.97	97.42	98.33	97.47	99.18	98.31	98.40	98.78	98.27
$(\Delta_R \ [\%])$	(+2.1)	(+3.1)	(+4.1)	(+1.4)	(+2.3)	(-0.5)	(+0.2)	(+1.8)	(+31.0)	(+42.2)	(+30.8)	(+17.0)	(+4.0)	(+13.7)	(-10.5)	(+19.5)	(+13.9)	(+20.0)	(+32.6)	(+17.9)	(+8.0)	(+4.3)	(+8.4)	(+17.5)

We evaluate on **3 few-shot datasets** with **7 backbone architectures** against **10 OCL competitors**.

 \rightarrow RobOCLe outperforms all baseline competitors in every scenario.

TABLE III

ACCURACY ON OTHER-DOMAIN DATA GENERATED VIA CONTROLLED AUGMENTATIONS ON THE OPENLORIS WITH RESNET152 AND VIT-L16.

Results highlighted in yellow: same augmentations between train and test. TR: train, te:test.

		NCM			RobC	OCLe _{NCI}	M (ou	urs)						NCM			RobOCLe _{NCM} (ours)					
	tr \downarrow te $ ightarrow$	clean illum geom nois	se all	Avg OD	clean illu	um geom	noise	all	Avg OD	$\Delta_R^{\rm OD}$		$tr\downarrow te \rightarrow$	clean illu	m geon	n noise	all	Avg OD	clean illun	geom noi	se all	Avg OD	$\Delta_R^{\rm OD}$
	clean	84.12 34.75 77.37 60.8	2 13.40	46.59	88.15 41	.26 82.10	66.16 1	8.16	51.92	(+10.0)		clean	79.47 35.	11 73.4	3 66.57	19.49	48.65	80.31 33.13	73.69 68.	38 19.74	48.73	(+0.2)
	illum	56.91 53.91 54.77 45.7	5 30.29	46.93	62.65 56	.83 59.92	51.26 3	1.91	51.44	(+8.5)		illum	30.78 40.	58 33.0	0 29.12	30.00	30.73	30.82 35.00	35.17 30.	55 31.22	31.96	(+1.8)
23	geom	82.01 40.49 81.07 64.0	5 19.67	51.55	86.21 45	.11 84.39	67.92 2	3.90	55.79	(+8.7)		geom	78.01 36.	62 79.1	9 68.73	23.31	51.67	78.70 37.05	78.64 68.	37 24.32	52.24	(+1.2)
	noise	77.27 35.60 71.99 74.3	1 20.08	51.23	82.78 43	.99 78.67	78.82 2	4.84	57.57	(+13.0)	.16	noise	73.67 36.	37 66.2	7 75.64	25.41	50.43	73.84 36.58	68.55 76.	51 25.56	51.13	(+1.4)
Ne	all	40.45 43.49 38.22 32.3	5 35.02	38.63	43.07 44	.33 41.64	35.95 3	7.33	41.25	(+4.3)	Ľ	all	15.32 32.	27 21.5	8 15.25	31.79	21.11	17.05 32.26	20.98 18.	21 24.77	22.13	(+1.3)
Res		SLDA	<u>.</u>			RobOCLe	SLDA (ours)			No.				SLDA				RobOCLe	SLDA (ours)	
	clean	99.13 47.19 92.55 77.0	9 19.74	59.14	99.78 48	.69 93.31	80.17 2	0.32	60.63	(+3.6)		clean	98.69 38.	30 92.9	4 90.09	21.49	60.71	99.73 40.69	95.04 93.	03 22.53	62.82	(+5.4)
	illum	86.68 79.65 77.76 61.8	8 39.41	66.43	89.02 82	.21 79.29	64.58 4	0.89	68.45	(+6.0)		illum	83.68 77.	13 72.8	6 72.39	50.58	69.88	86.13 80.65	77.00 76.	9 52.56	72.97	(+10.3)
	geom	98.05 49.50 97.53 78.0	8 22.59	62.06	98.81 51	.32 98.40	78.05 2	3.12	62.83	(+2.0)		geom	97.72 46.	72 96.8	6 89.44	27.98	65.46	98.74 45.87	98.10 92.	25 28.08	66.23	(+2.2)
	noise	97.81 50.14 90.12 96.8	3 28.12	66.55	98.72 51	.82 92.85	98.12 2	8.57	67.99	(+4.3)		noise	97.42 40.	08 89.8	7 97.19	26.21	63.40	98.82 41.90	93.41 98.	58 26.69	65.21	(+4.9)
	all	70.16 68.79 70.85 66.3	6 <u>6</u> 2.60	69.04	74.78 71	.70 74.88	68.73 <mark>6</mark>	5.31	72.52	(+11.3)		all	71.27 68.	15 66.0	3 68.67	65.09	68.53	72.81 71.36	71.58 71.	59 68.4 3	71.84	(+10.5)

TABLE IV

ACCURACY ON OTHER-DOMAIN DATA WITH CONTROLLED

AUGMENTATIONS ON RN152 ON THE FEW-SHOT BENCHMARKS.

					N	СМ					RobO	CLeNO	см (о	urs)	
	tr↓ t	$te \rightarrow$	clean	illum	geom	noise	all	$Avg_{\rm OD}$	clean	illum	geom	noise	all	$Avg_{\rm OD}$	$\Delta_R^{\rm OD}$
small	clean		47.68	20.68	43.99	34.50	9.22	27.10	54.89	25.64	50.50	41.32	11.43	32.22	(+7.0)
-SIT	illum		32.92	29.84	31.11	25.77	14.77	26.14	36.62	31.87	34.83	29.64	15.30	29.10	(+4.0)
ORIS-	geom		47.15	22.36	46.14	35.27	11.16	28.98	53.61	27.19	51.60	40.87	13.51	33.80	(+6.8)
	noise		42.00	19.07	38.32	39.62	11.45	27.71	47.44	25.22	45.18	44.22	14.56	33.10	(+7.5)
5	all		21.39	25.70	26.02	23.71	23.25	24.21	27.31	28.23	31.37	26.73	25.17	28.41	(+5.5)
5s	clean		93.66	34.44	71.90	55.49	19.35	45.29	94.58	42.16	77.78	63.79	23.53	51.81	(+11.9)
	illum		48.04	56.01	37.52	36.14	27.06	37.19	51.70	61.31	39.74	36.73	30.33	39.62	(+3.9)
FSIOL310-	geom		76.86	34.97	81.57	35.75	24.05	42.91	77.65	40.92	82.03	39.67	29.54	46.94	(+7.1)
2	noise		53.46	29.08	35.62	68.82	16.67	33.71	58.10	36.41	40.65	75.16	18.63	38.45	(+7.1)
E	all		32.03	30.13	31.96	25.23	40.85	29.84	34.77	36.01	34.84	29.54	44.64	33.79	(+5.6)
S	clean		94.33	38.25	76.58	60.83	17.42	48.27	96.50	45.00	79.75	68.08	22.50	53.83	(+10.8)
310-10s	illum		57.00	63.50	46.67	40.25	32.17	44.02	58.75	71.58	52.17	43.58	38.75	48.31	(+7.7)
31	geom		82.83	39.83	86.58	37.42	23.83	45.98	85.92	46.08	87.83	42.17	31.00	51.29	(+9.8)
FSIOL	noise		58.50	32.25	47.33	78.42	17.83	38.98	68.17	37.75	45.25	85.83	20.75	42.98	(+6.6)
ES	all		35.58	38.92	36.00	29.33	49.92	34.96	39.42	47.50	43.42	27.50	53.17	39.46	(+6.9)

TABLE III

ACCURACY ON OTHER-DOMAIN DATA GENERATED VIA CONTROLLED AUGMENTATIONS ON THE OPENLORIS WITH RESNET152 AND VIT-L16.

Results highlighted in yellow: same augmentations between train and test. tr: train, te:test.

		NCM	NCM			RobO	CLe _{NCM} (ours)				N	ICM		RobOCLe _{NCM} (ours)				
tr↓	$te \rightarrow$	clean illum geom no	ise all	Avg OI) clean illui	n geom	noise all	Avg OD	$\Delta_R^{\rm OD}$	tr↓ te–	→ clean illun	n geom	noise all	Avg OD	clean illum	geom noise	all A	vg OD	$\Delta_R^{\rm OD}$
clea		84.12 34.75 77.37 60.			88.15 41.2				(+10.0)	clean	79.47 35.1				80.31 33.13			48.73	(+0.2)
illu		56.91 53.91 54.77 45. 82.01 40.49 81.07 64.			62.65 56.8 86.21 45.1				(+8.5) (+8.7)	illum geom	30.78 40.58 78.01 36.62		29.12 30.0 68.73 23.3		30.82 35.00 78.70 37.05	35.17 30.65 78.64 68.87			(+1.8) (+1.2)
Inoi Net15		77.27 35.60 71.99 74.			82.78 43.9 43.07 44.3				(+13.0) (+4.3)	91 noise 11 all	73.67 36.37		75.64 25.4		73.84 36.58	68.55 76.51 20.98 18.21			(+1.4) (+1.3)
Res		SLD	_	2 50.05			$_{\rm SLDA}$ (our	<u> </u>	(17.5)	Liv	15.52 52.2		LDA	21.11		RobOCLe _{SL}	\sim		(11.5)
clea	an	99.13 47.19 92.55 77.	09 19.7	4 59.14	99.78 48.6				(+3.6)	clean	98.69 38.30	0 92.94	90.09 21.4	9 60.71	99.73 40.69				(+5.4)
illu		86.68 79.65 77.76 61.			89.02 82.2				(+6.0)	illum	83.68 77.13				86.13 80.65				(+10.3)
geo noi		98.05 49.50 97.53 78. 97.81 50.14 90.12 96.			98.81 51.3 98.72 51.8	and a second second second			(+2.0) (+4.3)	geom noise	97.72 46.72 97.42 40.08				98.74 45.87 98.82 41.90			66.23 65.21	(+2.2) (+4.9)
all		70.16 68.79 70.85 66	35 62.6	0 69.04	74.78 71.7	0 74.88	68 73 65.3	72.52	(+11.3)	all	71.27 68.15	5 66.03	68.67 <mark>65.0</mark>	9 68.53	72.81 71.36	71.58 71.59	68.43	71.84	(+10.5)

TABLE IV

ACCURACY ON OTHER-DOMAIN DATA WITH CONTROLLED

AUGMENTATIONS ON RN152 ON THE FEW-SHOT BENCHMARKS.

				Ν	CM			RobOCLe _{NCM} (ours)									
	$tr\downarrow te \rightarrow$	clean	illum	geom	noise	all	Avgod	clean	illum	geom	noise	all	$Avg_{\rm OD}$	$\Delta_R^{\rm OD}$			
small	clean	47.68	20.68	43.99	34.50	9.22	27.10	54.89	25.64	50,50	41.32	11.43	32.22	(+7.0)			
	illum	32.92	29.84	31.11	25.77	14.77	26.14	36.62	31.87	34.83	29.64	15.30	29.10	(+4.0)			
ORIS	geom			46.14			28.98			51.60			33.80	(+6.8)			
	noise	42.00	19.07	38.32	39.62	11.45	27.71			45,18				(+7.5)			
IO	all	21.39	25.70	26.02	23.71	23.25	24.21	27.31	28.23	31.37	26.73	25.17	28.41	(+5.5)			
5s	clean	93.66	34.44	71.90	55.49	19.35	45.29	94.58	42.16	77.78	63.79	23.53	51.81	(+11.9)			
0-5	illum	48.04	56.01	37.52	36.14	27.06	37.19			39.74				(+3.9)			
L31	geom	76.86	34.97	81.57	35.75	24.05	42.91	77.65	40.92	82.03	39.07	29.54	46.94	(+7.1)			
FSIO]	noise	53.46	29.08	35.62	68.82	16.67	33.71	58.10	36.41	40.65	75.16	18.63	38.45	(+7.1)			
FS	all	32.03	30.13	31.96	25.23	40.85	29.84	34.77	36.01	34.84	29.54	44.64	33.79	(+5.6)			
0s	clean	94.33	38.25	76.58	60.83	17.42	48.27	\$6.50	45.00	79.75	68.08	22.50	53.83	(+10.8)			
0-1	illum	57.00	63.50	46.67	40.25	32.17	44.02	58.75	71.58	52.17	43,58	38.75	48.31	(+7.7)			
31	geom	82.83	39.83	86.58	37.42	23.83	45.98	85.92	46.08	87.83	42.17	31.00	51.29	(+9.8)			
IOI	noise	58.50	32.25	47.33	78.42	17.83	38.98	68.17	37.75	45.25	85.83	20.75	42.98	(+6.6)			
FS	all	35.58	38.92	36.00	29.33	49.92	34.96	39.42	47.50	43.42	27.50	53.17	39.46	(+6.9)			

RoOCLe (ours) outperforms baseline on both:

- In-domain case (same augmentation in train/test sets)

TABLE III

ACCURACY ON OTHER-DOMAIN DATA GENERATED VIA CONTROLLED AUGMENTATIONS ON THE OPENLORIS WITH RESNET152 AND VIT-L16.

Results highlighted in yellow: same augmentations between train and test. tr: train, te:test.

		NCM		RobO	OCLe _{NCM} (ours)		NCM		RobOCLe _{NCM} (ours)				
	tr \downarrow te \rightarrow	clean illum geom noise a	ll Avg OD	clean illum geom	noise all	Avg OD Δ_R^{OD}	$tr\downarrow te \rightarrow$	clean illum geom noise	all Avg OD	clean illum geom noise all	Avg OD Δ_R^{OD}			
	clean	84.12 34.75 77.37 60.82 13.		88.15 41.26 82.10			clean	79.47 35.11 73.43 66.57	19.49 48.65	80.31 33.13 73.69 68.38 19.7	()			
	illum	56.91 53.91 54.77 45.75 30.	.29 46.93	62.65 56.83 59.92	51.26 31.91	51.44 (+8.5)	illum	30.78 40.58 33.00 29.12	30.00 30.73	30.82 35.00 35.17 30.65 31.2	31.96 (+1.8)			
23	geom	82.01 40.49 81.07 64.05 19.	.67 51.55	86.21 45.11 84.39	67.92 23.90	55.79 (+8.7)	geom	78.01 36.62 79.19 68.73	23.31 51.67	78.70 37.05 78.64 68.87 24.3	52.24 (+1.2)			
	noise	77.27 35.60 71.99 74.31 20.	.08 51.23	82.78 43.99 78.67	78.82 24.84	57.57 (+13.0)	noise	73.67 36.37 66.27 75.64	25.41 50.43	73.84 36.58 68.55 76.51 25.5	51.13 (+1.4)			
sNe	all	40.45 43.49 38.22 32.35 <mark>35</mark> .	.02 38.63	43.07 44.33 41.64	35.95 37.33	41.25 (+4.3)	E all	15.32 32.27 21.58 15.25	31.79 21.11	17.05 32.26 20.98 18.21 24.7	22.13 (+1.3)			
Re		SLDA		RobOCL	e _{SLDA} (ours		>	SLDA		RobOCLe _{SLDA}	(purs)			
	clean	99.13 47.19 92.55 77.09 19.	.74 59.14	99.78 48.69 93.31	80.17 20.32	60.63 (+3.6)	clean	98.69 38.30 92.94 90.09	21.49 60.71	99.73 40.69 95.04 93.03 22.5	62.82 (+5.4)			
	illum	86.68 79.65 77.76 61.88 39.	.41 66.43	89.02 82.21 79.29	64.58 40.89	68.45 (+6.0)	illum	83.68 77.13 72.86 72.39	50.58 69.88	86.13 80.65 77.00 76.19 52.5	72.97 (+10.3)			
	geom	98.05 49.50 97.53 78.08 22.	.59 62.06	98.81 51.32 98.40	78.05 23.12	62.83 (+2.0)	geom	97.72 46.72 96.86 89.44	27.98 65.46	98.74 45.87 98.10 92.25 28.0	66.23 (+2.2)			
	noise	97.81 50.14 90.12 96.83 28.	.12 66.55	98.72 51.82 92.85	98.12 28.57	67.99 (+4.3)	noise	97.42 40.08 89.87 97.19	26.21 63.40	98.82 41.90 93.41 98.68 26.6	65.21 (+4.9)			
	all	70.16 68.79 70.85 66.35 <mark>62.</mark>	. <mark>60</mark> 69.04	74.78 71.70 74.88	68.73 65.31	72.52 (+11.3)	all	71.27 68.15 66.03 68.67	65.09 68.53	72.81 71.36 71.58 71.59 68.4	71.84 (+10.5)			

TABLE IV

ACCURACY ON OTHER-DOMAIN DATA WITH CONTROLLED

AUGMENTATIONS ON RN152 ON THE FEW-SHOT BENCHMARKS.

				Ν		RobOCLe _{NCM} (ours)								
	$tr\downarrow te \rightarrow$	clean	illum	geom	noise	all	Avg_{OD}	clean	illum	geom	noise	all	Avg_{OD}	$\Delta_R^{\rm OD}$
small	clean	47.68	20.68	43.99	34.50	9.22	27.10	54.89	25.64	50.50	41.32	11.4	32.22	(+7.0)
	illum				25.77		26.14				29.64			(+4.0)
ORIS	geom noise				35.27 39.62		28.98 27.71				40.87 44.22			(+6.8)
OLC	all				23.71		24.21				26.73			(+7.5) (+5.5)
0-5s	clean illum				55.49 36.14		45.29 37.19				63.79 36.73			(+11.9)
-	geom				35.75		42.91				39.67			(+3.9) (+7.1)
FSIOL3	noise	53.46	29.08	35.62	68.82	16.67	33.71	58.10	36.41	40.65	75.16	18.6	38.45	(+7.1)
FS	all	32.03	30.13	31.96	25.23	40.85	29.84	34.77	36.01	34.84	29.54	44.6	33.79	(+5.6)
0s	clean	94.33	38.25	76.58	60.83	17.42	48.27	96.50	45.00	79.75	68.08	22.5	53.83	(+10.8)
1-0-1	illum				40.25		44.02				43.58			(+7.7)
L31	geom noise				37.42 78.42		45.98				42.17 85.83			(+9.8)
FSIOI	all				78.42 29.33		38.98 34.96				35.85 27.50			(+6.6) (+6.9)

RoOCLe (ours) outperforms baseline on both:

- In-domain case (same augmentation in train/test sets)
- Other-domain (different augmentations in train/test sets)

© 2023. Samsung Research All rights reserved.

4) Conclusion

New task: few-shot online continual learning targeting robust test-time object recognition for low-resource robots with limited labelled data and computational/storage capability.

New method: RobOCLe, a data- and parameter-efficient online continual learning method with robust performance under test-time corruptions.

New task: few-shot online continual learning targeting robust test-time object recognition for low-resource robots with limited labelled data and computational/storage capability.

New method: RobOCLe, a data- and parameter-efficient online continual learning method with robust performance under test-time corruptions.

RobOCLe features:

- Lightweight solution: frozen feature extractor + class-conditional Gaussian modelling of feature space
- Extraction of **high-order statistical moments** of the embedded features of input samples
- **Robust** recognition in a variety of scenarios, using several backbones, low-shot setups, per-step accuracy, and controlled train/test augmentation on both same-domain and other-domain data

Thank you!

Online Continual Learning for Robust Indoor Object Recognition Michieli U., Ozay M. MoBIP-19.1 Samsung Research

Come to our poster for more! MoBIP-19.1