

Unsupervised Domain Adaptation in Semantic Segmentation via Orthogonal and Clustered Embeddings

Marco Toldo, Umberto Michieli, Pietro Zanuttigh

January 5-9th, 2021

Semantic Segmentation

Task \rightarrow Assign each pixel of an image with a semantic label

- Deep learning as enabling factor
- Fully convolutional auto-encoders [1]

[1] J. Long et al., "Fully convolutional networks for semantic segmentations", CVPR, 2015.

Unsupervised Domain Adaptation

Issues of FCNs:

- 1. Tons of training samples to avoid overfitting
- 2. Low generalization capability

Domain Adaptation → from a *label-abundant source* to a *label-scarce target* domain

- Unsupervised ⇒ Source supervision only
- Distribution alignment across domains (e.g. adversarial learning)
- Multiple adaptation levels [2]

Model Architecture - Overview

→ *Class-conditional* domain alignment of feature distribution

4

Model Architecture - Clustering

→ Group together features of *same class* from *both domains*

Model Architecture - Orthogonality & Sparsity

➢ Orthogonality loss:
$$\mathcal{L}_{or} = -\sum_{\mathbf{f}_i \in F(\mathbf{X}_n^{s,t})} \sum_{j \in \mathcal{C}} p_j(\mathbf{f}_i) \log p_j(\mathbf{f}_i)$$

 $\begin{array}{ll} \text{Similarity based} \\ \text{distribution:} \end{array} \quad p_j(\mathbf{f}_i) = \frac{e^{\langle \mathbf{f}_i, \mathbf{c}_j \rangle}}{\sum_{k \in \mathcal{C}} e^{\langle \mathbf{f}_i, \mathbf{c}_k \rangle}}, \quad j \in \mathcal{C} \end{array}$

→ Orthogonality on *distinct* classes, similarity within *same* class

Experiments: $GTA \rightarrow Cityscapes$

Source domain: *synthetic* GTA dataset

Target domain: real-world Cityscapes dataset

					Method	mloU	
					Source Only	37.0	
					Tsai et al. [3] (feat)	39.3	
					MinEnt [4]	42.3	
GO CO					MaxSquare IW [5]	45.2	
	•		4		$\mathcal{L}_{cl} + \mathcal{L}_{or} + \mathcal{L}_{sp}$	45.3	
					$\mathcal{L}_{cl} + \mathcal{L}_{or} + \mathcal{L}_{sp} + \mathrm{EM}$	45.9	
8	•				Results for 19 classes, DeepLa	ıb-v2 with	
Target Image	Annotation	Source Only	MaxSquare IW [5]	Ours (with EM)	ResNet-101 backbone		

[3] Y. Tsai et al., "Learning to adapt structured output space for semantic segmentation", In CVPR, 2018.

[4] T. Vu et al., "ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation", In CVPR, 2019.

[5] M. Chen et al., "Domain adaptation for semantic segmentation with maximum squares loss", In ICCV, 2019.

Experiments: SYNTHIA → Cityscapes

Source domain: *synthetic* SYNTHIA dataset **Target domain**: *real-world* Cityscapes dataset

					Method	mloU	
AL AND AND A	AF ARSHIE				Source Only	40.5	
				Carlo - Carlo	Tsai et al. [3] (feat)	40.8	
					MinEnt [4]	44.2	
	A A A A A A A A A A A A A A A A A A A		Martin Martin	and and a second have	MaxSquare IW [5]	46.9	
		The second		Ĵ, Ĉ	$\mathcal{L}_{cl} + \mathcal{L}_{or} + \mathcal{L}_{sp}$	44.2	
		or and	and makel		$\mathcal{L}_{cl} + \mathcal{L}_{or} + \mathcal{L}_{sp} + \mathrm{EM}$	48.2	
					Results for 13 classes, DeepLa	ab-v2 with	
Target Image	Annotation	Source Only	MaxSquare IW [5]	Ours (with EM)	ResNet-101 backbone		

[3] Y. Tsai et al., "Learning to adapt structured output space for semantic segmentation", In CVPR, 2018.

[4] T. Vu et al., "ADVENT: Adversarial Entropy Minimization for Domain Adaptation in Semantic Segmentation", In CVPR, 2019.

[5] M. Chen et al., "Domain adaptation for semantic segmentation with maximum squares loss", In ICCV, 2019.

Feature space regularization in UDA for Semantic Segmentation

Our main contributions:

- Feature clustering for semantic segmentation
- Orthogonality and sparsity objectives to force a regular structure of the embedding space
- State-of-the-art results on feature-level non adversarial adaptation on two widely used benchmarks

Thank you for the attention !

Paper website: https://lttm.dei.unipd.it/paper_data/UDAclustering/

Arxiv: https://arxiv.org/abs/2011.12616

Code: <u>https://github.com/LTTM/UDAclustering</u>

Contact: toldomarco@dei.unipd.it

