

Are All Users Treated Fairly in Federated Learning Systems?

Umberto Michieli and Mete Ozay

Università degli Studi di Padova

Overview

- Background
- Targeted Challenges and Motivation
- Our Method (FairAvg)
- Results
- Conclusions

Federated Learning: Distributed Machine Learning on Heterogeneous Data

Background

Background

Differences between Distributed Learning and Federated Learning

Distributed Learning

Federated Learning

Both aim at training a single model on multiple nodes

Focus: Parallelizing computing power

- Distributed data on each client has roughly the same size
- ✤ Data are distributed i.i.d.
- Nodes are typically (reliable) datacenters

Focus: Training on heterogeneous datasets

- Distributed data on each client has not same size (e.g., powerlaw)
- ✤ Data are distributed **non-i.i.d.**
- Clients may be unreliable (low battery, WiFi, etc)

Background

Our focus will be on the *classical* Centralized Federated Learning

Step 1 Step 2 Step 3 Step 4 model-server model-server Coordination of a model-server model-server Average central server Model Sync worker-a worker-a worker-b worker-b worker-c worker-b worker-c worker-c worker-a worker-a worker-b worker-c Central server Central server Nodes train the Central server pools SERVER model results and chooses a statistical transmits the initial model locally with model to be trained model to several their own data generate one global mode without nodes accessing any data

Targeted Challenges

FL is a complicate task and many challenges exist [1,2].

Our focus will be on:

- Statistical (data) heterogeneity
 - data is **highly imbalanced**: different number of samples for different classes on each device •
 - data is **highly non-iid**: samples in remote clients correlated due to specific user habits or preference •

Samsung Research

McMahan B., et al. "Communication-efficient learning of deep networks from decentralized data." *Artificial Intelligence and Statistics*. PMLR, 2017.
Michieli U. and Ozay M., "Are All Users Treated Fairly in Federated Learning Systems?", CVPRW RCV 2021

FairAvg (CVPRW)

Federated Datasets

Dataset	# Classes	Clients	Samples	Samples/Client		Model	Distribution	Central.	Start lr	Solver	\mathbf{F}	Rounds	Batch
				Mean	Std.			Acc. (%)					size
Synthetic	10	30	9,600	320.0	1051.6	2 dense layers	Power-law	78.5	0.01	SGD	20	200	10
MNIST	-10^{-10}	1,000	61, 676	$\overline{61.7}$	164.7	2-layer CNN	Power-law	99.0	0.01	SGD	20	200	10
FEMNIST	10	200	16,421	82.1	143.0	2-layer CNN	Power-law	99.0	0.001	SGD	20	400	10
Sent140	2	772	40,783	53	32	Stacked-LSTM	Power-law	72.3	0.3	SGD	20	800	10
Shakespeare	80	143	517, 106	3,616	6,808	Stacked-LSTM	Power-law	49.9	0.8	SGD	20	40	10

Table 1. Statistics of the employed datasets (left) and hyper-parameters (right).

- synthetic classification dataset
- real-world classification datasets

Samples are distributed to clients according to power-law distribution

Peter Thiel:

"We Don't Live In A Normal World; We Live Under A Power Law."

→ Occurring often and reasonable assumption

Federated Datasets

Samples are distributed to clients according to powerlaw distribution

Note1: we subsample K=10 clients Note2: a computed by FedAvg is $a_k \propto n_k$

Many clients contribute little while aggregation
Few clients tend to *dominate the scene*

→ If data is highly non-i.i.d. this represents a problem for convergence

FairAvg (CVPRW)

(less

- \rightarrow FairAvg improves accuracy wrt FedAvg (when data are distributed non-i.i.d.)
- → FairAvg reduces fluctuation towards convergence values wrt FedAvg (when data are distributed non-i.i.d.)

- ✓ **FairAvg** > FedAvg in accuracy, convergence rate, and fluctuations of accuracy of the aggregate model
- ✓ Future FL models could employ federated aggregation values centered around the value employed by FairAvg for more uniform treatment of user contributions

Università degli Studi di Padova

