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Semantic Segmentation
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• Dense labeling task: assign a class label to each single pixel in an image

• Nowadays solved with deep learning, typically auto-encoder CNNs

• Large generic datasets for training are available but it is challenging to get 

data specific to the task

RGB Ground TruthPrediction



Unsupervised Domain Adaptation
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Feature space 
adaptation

Encoder Decoder

Source
Target

• Labeling data is available only for the source dataset

• Goal: achieve good results on a different (but related) target dataset

• Domain shift limits performance: need for adaptation

• The adaptation can be performed at input, feature or output space



Output Level Adaptation
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Task Loss: extract knowledge 

from source supervision

Output Level Adversarial Modules: align prediction maps

between source and target domains w.r.t. source GT maps

Self-Training: use confident 

target pseudo labels for 

self-taught supervision



Adversarial Adaptation
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Two Adversarial Adaptations

• D1: GT vs Prediction

 indirect domain alignment

 both source and target

predictions can be used

• D2: Source vs Target
 direct domain alignment

Fake: 
Target prediction

Fake: 
Source&Target pred.

Real:
Source prediction

Real:
Source GT



Self-Training
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• Use highly confident network predictions for self-teaching on target dataset

• Use discriminator’s output as a confidence measure

• Class and step adaptive thresholding dynamically updated during training

Loss: Weighted cross-entropy with pseudo labels

Confidence based mask computed

from discriminator's output

Adaptive Threshold based on 

class-wise distribution



Quantitative Results
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Method
mIoU

GTA5→CS SYNTHIA→CS

Supervised (baseline) 31.9 28.8

Hoffman et al. [1] 27.1 20.1

Hung et al.  [2] 29.0 29.4

Zhang et al. [3] 28.9 29.0

Biasetton et al. [4] 30.4 30.2

Michieli et al. [5] 33.3 31.3

Ours 35.1 34.6

Method
mIoU

GTA5→MAP SYNTHIA→MAP

Supervised (baseline) 37.8 31.1

Hung et al. [2] 34.4 27.0

Biasetton et al. [4] 35.2 28.2

Michieli et al. [5] 38.5 32.0

Ours 41.9 34.9

• 2 Source synthetic datasets (GTA5 or SYNTHIA)

• 2 Target real-world datasets (Cityscapes and Mapillary)

• Results computed using a DeepLab-v2 network with Resnet-101 as encoder
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Visual Results (Cityscapes)
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Visual Results (Mapillary)
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Conclusions
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We presented a novel adversarial learning and self-teaching scheme for 

unsupervised domain adaptation

Domain discriminators capture both source vs target and ground truth vs 

prediction statistics

Adaptive self-training strategy

 Experimental results on synthetic to real adaptation show that the 

approach outperforms competing schemes using output-level adaptation

Paper webpage: 

https://lttm.dei.unipd.it/paper_data/semanticDA

https://lttm.dei.unipd.it/paper_data/semanticDA

