—) DIPARTIMENTO
= DIINGEGNERIA
—  DELL'INFORMAZIONE

ICPR

Unsupervised Domain Adaptation with Multiple
Domain Discriminators and Adaptive Selt-Training

Teo Spadotto, Marco Toldo, Umberto Michieli, Pietro Zanuttigh

January 15th, 2021



Semantic Segmentation

RGB Prediction Ground Truth

* Dense labeling task: assign a class label to each single pixel in an image
 Nowadays solved with deep learning, typically auto-encoder CNNs

« Large generic datasets for training are available but it is challenging to get
data specific to the task



Unsupervised Domain Adaptation -

Feature space
adaptation

Labeling data is available only for the source dataset
Goal: achieve good results on a different (but related) target dataset
Domain shift limits performance: need for adaptation

The adaptation can be performed at input, feature or output space




Output Level Adaptation
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Output Level Adversarial Modules: align prediction maps
between source and target domains w.r.t. source GT maps




Adversarial Adaptation

Two Adversarial Adaptations
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Self-Training

Adaptive Threshold based on

Loss: Weighted cross-entropy with pseudo labels / class-wise distribution
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Confidence based mask computed
from discriminator's output

* Use highly confident network predictions for self-teaching on target dataset
« Use discriminator’s output as a confidence measure
« Class and step adaptive thresholding dynamically updated during training



Quantitative Results

GTA5-MAP | SYNTHIA-MAP

GTA5-CS | SYNTHIA-CS

Supervised (baseline) 31.9 28.8 Supervised (baseline) 37.8 31.1
Hoffman et al. [1] 27.1 20.1 Hung et al. [2] 34.4 27.0
Hung et al. [2] 29.0 29.4 Biasetton et al. [4] 35.2 28.2
/hang et al. [3] 28.9 29.0 Michieli et al. [5] 38.5 32.0
Biasetton et al. [4] 30.4 30.2 Qurs 41.9 34.9

Michieli et al. [5] 33.3 31.3 e . xnans g o e somemsosmaromc smanton e g '

[31 Y. Zhang et al., “*Curriculum domain adaptation for semantic segmentation of urban scenes,” ICCV, 2017

Ours 35.1 34.6 [Czll/gx\lévl?;i’ozsg]f;on et al., “Unsupervised Domain Adaptation for Semantic Segmentation of Urban Scenes,”

[5] U. Michieli et al., “Adversarial learning and self-teaching techniques for domain adaptation in semantic
segmentation,” IEEE Transaction on Intelligent Vehicles, 2020

« 2 Source synthetic datasets (GTAS or SYNTHIA)
« 2 Target real-world datasets (Cityscapes and Mapillary)
« Results computed using a DeeplLab-v2 network with Resnet-101 as encoder



Visual Results (Cityscapes)

building wall traffic light traffic sign terrain
person rider car truck bus train motorcycle bicycle unlabeled
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From SYNTHIA

image annotation supervised (L¢g 1) Biasetton ours (L fy1)



Visual Results (Mapillary)

building = wall traffic light traffic sign terrain
person rider car truck bus motorcycle bicycle unlabeled

image annotation supervised (Lg.1) Biasetton et al. [4] ours (L fu1)



Conclusions n

® We presented a novel adversarial learning and self-teaching scheme for
unsupervised domain adaptation

® Domain discriminators capture both source vs target and ground fruth vs
prediction statistics

m Adaptive self-training strategy

m Experimental results on syntheftic o real adaptation show that the
approach outperforms competing schemes using output-level adaptation

Paper webpage:
https://Ittm.dei.unipd.it/paper data/semanticDA
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