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Semantic	Segmentation	- Definition

Assign	to	each	pixel	a	label	representing	the	class	to	

which	the	pixel	belongs.

• Dense	task

• Deep	learning	revolutionized	the	field
(autoencoder models)	[1]	

people

road

road	signs

cars

sidewalk

background

[1]	Long	et	al.,	"Fully	convolutional	networks	for	semantic	segmentation",	CVPR	2015.	
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Figure 2. Autonomous cars, industry robots and home assistant robots are just some of the possible
real world applications of UDA in semantic segmentation.

solution would be to transfer source knowledge acquired on a broader scenario and adapt it to the
specific setup being targeted. Such context, for example, is fairly common in industrial applications

An example application is face recognition, which represents a challenging problem that has been
actively researched for many years. Current models for face recognition perform very well when
training and test images are acquired under controlled conditions. However, their accuracy quickly
degrades when the test images contain variations that are not present in the training images [20].
For instance, these variations could be change in pose, illumination or view and depending on the
composition of training and test sets this can be regarded as a domain adaptation problem [20,21].

Another straightforward application lies in object recognition, where one may be interested in
adapting object detection capabilities from a typically larger set to a specific small-size dataset [22].

Furthermore, the recent improvements in the computer graphics field allowed the production
of a large amount of synthetic data for many vision-related tasks. This allows to easily obtain large
training sets but on the other side the domain shift between synthetic and real world data needs to be
addressed. In this field, the most predominant application is found in autonomous vehicles scenarios
as will be further discussed in Section ??.

In Figure 2 we show three typical scenarios in which UDA for semantic segmentation could be
highly valuable: namely, autonomous vehicles, industrial automation and domestic robots.

1.5. Outline

In this paper, we mainly focus on analyzing and discussing deep UDA methods in semantic
segmentation. Recently, there has been a large number of studies related to this task. However, the
motivating ideas behind these methods are different. To connect the existing work and hence to better
understand the problem, we organize the current literature into some categories. We hope to provide a
useful resource for the research of UDA in semantic segmentation.

The rest of the survey is organized as follows: in Section 2 a concise and precise formulation
of UDA for semantic segmentation is given outlining at which stage the adaptation process may
occur. Then, in Section 3 we give an overview of the state of the art literature on the topic. We start
from precursor techniques with weak supervision and then we propose a categorization based on the
levels of the adaptation space between source and target distributions. In Section 4 we introduce a
case study o synthetic to real unsupervised adaptation for semantic understanding of road scenes
and we give an overview of the results of existing methods grouped by network architecture and
evaluation scenario. In Section 5 we conclude our review with some final considerations on the
different adaptation techniques and we outline some possible future directions.

2. Unsupervised Domain Adaptation for Semantic Segmentation

2.1. Problem Formulation

DA SPIEGARE MEGLIO QUESTA PARTE
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Coarse-to-Fine	Learning
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Coarse-to-Fine	at	Spatial	Level
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Coarse-to-Fine	at	Spatial	Level
First	idea	(baseline):	just	train	a	network	on	all	the	different	parts

Low	results,	2	main	reasons:

q Object-level	ambiguity: corresponding	parts	in	different	semantic	classes	
often	share	similar	appearance	

Ø object-level	guidance	via	semantic	embedding	network	!
Ø auxiliary	reconstruction	module	from	parts	to	objects

q Part-level	ambiguity:	limited	local	context	is	captured

Ø graph-matching module	to	preserve	relative	spatial	relationships	

between	ground	truth	and predicted	parts.

1



GMNet Architecture
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Graph	Matching	Module
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to be recomputed at each training step, we approximate this operation by di-
lating the two masks of dT/2e and computing the intersecting region. Formally,
defining with pGT

i = Yp[i] the mask of the i-th part in the ground truth map
Yp, we have:

m̃GT
i,j =

�

�

�

s 2 �
�

pGT
i

�

\ �
�

pGT
j

� 

�

� (6)

Where s is a generic pixel, �(·) is the morphological 2D dilation operation and
| · | is the cardinality of the given set. We apply a row-wise L2 normalization and
we obtain a matrix of proximity ratios MGT

[i,:] = M̃GT
[i,:]/kM̃GT

[i,:]k2 that measures
the flow from the considered part to all the others.

With this definition, non-adjacent parts have 0 as entry. The same approach
is used for the adjacency matrix computed on the predicted segmentation map
Mpred by substituting pGT

i with ppredi = Ŷp[i].
Then, we simply define the Graph-Matching loss as the Frobenius norm be-

tween the two adjacency matrices:

LGM = ||MGT �Mpred||F (7)

The aim of this loss function is to faithfully maintain the reciprocal relation-
ships between parts. On one hand, disjoint parts are enforced to be predicted as
disjoint; on the other hand, neighboring parts are enforced to be predicted as
neighboring and to match the proximity ratios.

In brief, the overall training objective of our framework is:

L = LCE + �1Lrec + �2LGM (8)

where the hyper-parameters �1 and �2 are used to control the relative con-
tribution of the three losses to the overall objective function.

5 Training of the Deep Learning Architecture

5.1 Multi-Part Dataset

For the experimental evaluation of the proposed multi-class part parsing frame-
work we employed the Pascal-Part [8] dataset, which is the largest dataset for
this purpose. It contains a total of 10103 variable-sized images with pixel-level
parts annotation on the 20 Pascal VOC2010 [15] semantic object classes (plus
the background class). We employ the original split from [8] with 4998 images in
the trainset for training and 5105 images in the valset for testing. We consider
two di↵erent sets of labels for this dataset. Following [51], which is the only
work dealing with the multi-class part parsing problem, we grouped the original
semantic classes into 58 part classes in total. Additionally, to further test our
algorithms on a even more challenging scenario, we consider the grouping rules
proposed by [17] for part detection that, instead, leads to a larger set of 108
parts.

Graph-Matching	loss:

Normalized matricesà proximity ratios



Dataset	– VOC2012	Pascal	Parts

PASCAL-VOC 2012: 

[1] Zhao et al., “Multi-class Part Parsing with Joint Boundary-Semantic Awareness”, iCCV 2019
[2] A. Gonzalez-Garcia et al., ”Do Semantic Parts Emerge in Convolutional Neural Networks?”, IJCV, 2017
[3] Michieli et al., “GMNet: Graph Matching Network for Large Scale Part Semantic Segmentation in the Wild”, ECCV, 2020

RGB																 Object-level	GT																						Pascal-Part-58																						Pascal-Part-108

§ 10103 images: 4998 train and 5105 validation
§ 21 object-level classes
§ Pascal-Part-58 [1] and Pascal-Part-108 [2,3]



Experiments	– Pascal	58
Method mIoU Avg.

SegNet 24.4 26.5

FCN 42.3 44.9

DeepLab v1 49.9 51.9

DRN	D	38 50.0 50.9

DRN	D	105 53.0 53.0

BSANet* 58.2 58.9

Baseline	
(DeepLab v3)

54.4 55.7

GMNet (ours) 59.0 61.8
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RGB Annotation Baseline [6] BSANet [51] GMNet (ours)

Fig. 3. Qualitative results on sample scenes on the Pascal-Part-58 dataset (best viewed
in colors).

Avg., i.e., in this case each object has the same weight independently of the num-
ber of parts). Part-level metrics are reported in the supplementary material. As
expected, traditional semantic segmentation architectures such as FCN [30], Seg-
Net [3] and DeepLab [5] are not able to perform a fully satisfactory part-parsing.
We adopt as our baseline network the DeepLab-v3 architecture [6], that is the
best performing among the compared standard approaches achieving 54.4% of
mIoU. The proposed GMNet approach combining both the object-level seman-
tic embedding and the graph matching module achieves a higher accuracy of
59.0% of mIoU, significantly outperforming all the other methods and in partic-
ular the baseline on every class with an overall gap of 4.6% of mIoU. The only
other method specifically designed to address part-based semantic segmentation
is BSANet [51], which achieves a lower mIoU of 58.2%. In general, we can see
that our method generates higher results over most of the objects, both with
many parts (like cow, dog and sheep) and with no or few parts (like boat, bottle,
chair, dining table and sofa).

Some qualitative results are shown in Figure 3 and additional samples are
shown in the supplementary material. The figure allows to appreciate the e↵ects
of the two main components of our work, namely the semantic embedding and
the graph matching modules.

From one side, the object-level semantic embedding network brings useful
additional information prior to the part-level decoding stage, thus enriching the
extracted features to be object discriminative. We can appreciate this aspect
from the first and the third row. In the first row, the baseline completely misleads

RGB															Annotation										Baseline													BSANet*						GMNet (ours)
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Fig. 3. Qualitative results on sample scenes on the Pascal-Part-58 dataset (best viewed
in colors).

Avg., i.e., in this case each object has the same weight independently of the num-
ber of parts). Part-level metrics are reported in the supplementary material. As
expected, traditional semantic segmentation architectures such as FCN [30], Seg-
Net [3] and DeepLab [5] are not able to perform a fully satisfactory part-parsing.
We adopt as our baseline network the DeepLab-v3 architecture [6], that is the
best performing among the compared standard approaches achieving 54.4% of
mIoU. The proposed GMNet approach combining both the object-level seman-
tic embedding and the graph matching module achieves a higher accuracy of
59.0% of mIoU, significantly outperforming all the other methods and in partic-
ular the baseline on every class with an overall gap of 4.6% of mIoU. The only
other method specifically designed to address part-based semantic segmentation
is BSANet [51], which achieves a lower mIoU of 58.2%. In general, we can see
that our method generates higher results over most of the objects, both with
many parts (like cow, dog and sheep) and with no or few parts (like boat, bottle,
chair, dining table and sofa).

Some qualitative results are shown in Figure 3 and additional samples are
shown in the supplementary material. The figure allows to appreciate the e↵ects
of the two main components of our work, namely the semantic embedding and
the graph matching modules.

From one side, the object-level semantic embedding network brings useful
additional information prior to the part-level decoding stage, thus enriching the
extracted features to be object discriminative. We can appreciate this aspect
from the first and the third row. In the first row, the baseline completely misleads

* It	is	the	only	other	method	for	multi-class	part	parsing	and	uses	the	same	architecture	(DeepLab v3+,	ResNet-101)

Multi-class	Zhao	et	al.,	“Part	Parsing	with	Joint	Boundary-Semantic	Awareness”,	iCCV 2019



Experiments	– Pascal	108
Method mIoU Avg.

SegNet 18.6 20.8

FCN 31.6 33.8

DeepLab v1 35.7 40.8

DRN	D	38 39.1 41.9

DRN	D	105 39.5 41.0

BSANet* 42.9 46.3

Baseline	
(DeepLab v3)

41.3 43.7

GMNet (ours) 45.8 50.5
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RGB Annotation Baseline [6] BSANet [51] GMNet (ours)

Fig. 4. Qualitative results on sample scenes on the Pascal-Part-108 dataset (best viewed
in colors).

remarkable with a gap of 2.9% of mIoU. In this scenario, indeed, most of the
previous considerations holds and are even more evident from the results. The
gain in accuracy is stable across the various classes and parts: the proposed
framework significantly wins by large margins on almost every per-object-class
mIoU. Also for this setup, further results regarding per-part metrics are reported
in the supplementary material.

Thanks to the object-level semantic embedding network our model is able to
perform accurate segmentation of all the objects with few or no parts inside, such
as boat, bottle, chair, plant and sofa. On these classes, the gain with respect to
[51] ranges from 5.4% for the plant class to an impressive 15% on the chair class.
On the other hand, thanks to the graph matching module, our framework is also
able to correctly understand the spatial relationships between small parts, as
for example the ones contained in cat, cow, horse and sheep. Although objects
are composed by tiny and di�cult parts, the gain with respect to [51] is still
significant and ranges between 1.5% on horse parts to 11.2% on cow ones.

The visual results for some sample scenes presented in Figure 4 confirm the
numerical evaluation (additional samples are shown in the supplementary mate-
rial). We can appreciate that the proposed method is able to perform accurate
segmentation maps both when a few elements or many parts coexist in the scene.
More in detail, in the first row we can verify the e↵ectiveness of the object-level
semantic embedding in conditioning part parsing. The baseline is not able to
localize and segment the body and the neck of the sheep. The BSANet approach
[51] achieves even worse segmentation and labeling performance. Such methods
mislead the sheep with a dog (in the figure light blue denotes dog head, light

RGB															Annotation										Baseline													BSANet*						GMNet (ours)

* It	is	the	only	other	method	for	multi-class	part	parsing	and	uses	the	same	architecture	(DeepLab v3+,	ResNet-101)

Multi-class	Zhao	et	al.,	“Part	Parsing	with	Joint	Boundary-Semantic	Awareness”,	iCCV 2019



Conclusion

Semantic	segmentation	of	multiple	parts	from	multiple	objects

Contributions:	

• Object-level	semantic	embedding	network	guides	part-level	decoding	stage	

• Graph-matching	module	for	accurate	relative	localization	of	semantic	parts	

• GMNet achieves	new	state-of-the-art performance	on	Pascal-Part-58	and	108



Paper	website:	https://lttm.dei.unipd.it/paper_data/GMNet

Code:	https://github.com/LTTM/GMNet

ArXiv:	https://arxiv.org/abs/2007.09073
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