ECCV20 ONLINE 23-28 AUGUST 2020

16TH EUROPEAN CONFERENCE ON COMPUTER VISION WWW.ECCV2020.EU

Università degli Studi di Padova

GMNet: Graph Matching Network for Large Scale Part Semantic Segmentation in the Wild

Umberto Michieli, Edoardo Borsato, Luca Rossi, Pietro Zanuttigh

umberto.michieli@dei.unipd.it

Semantic Segmentation - Definition

Assign to each pixel a label representing the class to which the pixel belongs.

- Dense task
- Deep learning revolutionized the field (autoencoder models) [1]

[1] Long et al., "Fully convolutional networks for semantic segmentation", CVPR 2015.

Multi-Class Part Parsing

 \rightarrow Learn multiple parts of multiple objects

Coarse-to-Fine Learning

Transfer knowledge form a coarse problem to a finer one

Spatial level coarse-to-fine: object-level classes split into their parts

 \rightarrow learn multiple parts of multiple objects

Annotations object-level

Annotations part-level

First idea (baseline): just train a network on all the different parts

Low results, 2 main reasons:

Object-level ambiguity: corresponding parts in different semantic classes often share similar appearance

First idea (baseline): just train a network on all the different parts

Low results, 2 main reasons:

Object-level ambiguity: corresponding parts in different semantic classes often share similar appearance

Sheep legs

Cow legs

First idea (baseline): just train a network on all the different parts

Low results, 2 main reasons:

Object-level ambiguity: corresponding parts in different semantic classes often share similar appearance

Part-level ambiguity: limited local context is captured

First idea (baseline): just train a network on all the different parts

Low results, 2 main reasons:

Object-level ambiguity: corresponding parts in different semantic classes often share similar appearance

Part-level ambiguity: limited local context is captured

First idea (baseline): just train a network on all the different parts

Low results, 2 main reasons:

Object-level ambiguity: corresponding parts in different semantic classes often share similar appearance

 \succ object-level guidance via semantic embedding network ${\mathcal S}$

> auxiliary reconstruction module from parts to objects

Part-level ambiguity: limited local context is captured

> graph-matching module to preserve relative spatial relationships

between ground truth and predicted parts.

Graph Matching Module

Normalized matrices \rightarrow *proximity ratios*

Graph-Matching loss:
$$\mathcal{L}_{GM} = ||\mathbf{M}^{GT} - \mathbf{M}^{pred}||_F$$

Dataset – VOC2012 Pascal Parts

PASCAL-VOC 2012: 10103 images: 4998 train and 5105 validation

- 21 object-level classes
- Pascal-Part-58 [1] and Pascal-Part-108 [2,3]

[1] Zhao et al., "Multi-class Part Parsing with Joint Boundary-Semantic Awareness", iCCV 2019 [2] A. Gonzalez-Garcia et al., "Do Semantic Parts Emerge in Convolutional Neural Networks?", IJCV, 2017 [3] Michieli et al., "GMNet: Graph Matching Network for Large Scale Part Semantic Segmentation in the Wild", ECCV, 2020

Experiments – Pascal 58

RGB	Annotation	Baseline	BSANet*	GMNet (ours)

Method	mloU	Avg.	
SegNet	24.4	26.5	
FCN	42.3	44.9	
DeepLab v1	49.9	51.9	
DRN D 38	50.0	50.9	
DRN D 105	53.0	53.0	
BSANet*	58.2	58.9	
Baseline (DeepLab v3)	54.4	55.7	
GMNet (ours)	59.0	61.8	

* It is the only other method for multi-class part parsing and uses the same architecture (DeepLab v3+, ResNet-101)

Experiments – Pascal 108

RGB	Annotation	Baseline	BSANet*	GMNet (ours)	Method	mloU	Avg.
					SegNet	18.6	20.8
					FCN	31.6	33.8
					DeepLab v1	35.7	40.8
					DRN D 38	39.1	41.9
					DRN D 105	39.5	41.0
		- And			BSANet*	42.9	46.3
				- 0	Baseline (DeepLab v3)	41.3	43.7
6668			~~~		GMNet (ours)	45.8	50.5

* It is the only other method for multi-class part parsing and uses the same architecture (DeepLab v3+, ResNet-101) Multi-class Zhao et al., "Part Parsing with Joint Boundary-Semantic Awareness", iCCV 2019

Semantic segmentation of **multiple parts** from **multiple objects**

Contributions:

- Object-level semantic embedding network guides part-level decoding stage
- Graph-matching module for accurate relative localization of semantic parts
- GMNet achieves new state-of-the-art performance on Pascal-Part-58 and 108

Paper website: https://lttm.dei.unipd.it/paper_data/GMNet

Code: https://github.com/LTTM/GMNet

ArXiv: https://arxiv.org/abs/2007.09073

Contact: umberto.michieli@dei.unipd.it

<u>Michieli U.</u>, Borsato E., Rossi L. and Zanuttigh P., "GMNet: Graph Matching Network for Large Scale Part Semantic Segmentation in the Wild," ECCV 2020.

Università degli Studi di Padova

