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Semantic Segmentation

objec:is objects H

furniture furniture

m Segmentation + labeling (pixel-wise classification)
® Deep learning and consumer depth sensors

m Very useful for free navigation systems to explore the surroundings
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Proposed Framework




Proposed Framework -

AIM: propose CNN for region merging and refine boundaries of shapes

Use normalized cuts spectral clustering extended for RGBD
- but bias toward region of similar sizes

Then 2 steps procedure:
® |nitial over-segmentation to properly separate objects

B Region merging procedure to avoid over-segmentation

Framework derived from [1] but much faster and simpler

[1] G.Pagnutti, L. Minto, P. Zanuttigh, "Segmentation and Semantic Labeling of RGBD Data with Convolutional Neural Networks and Surface Fitting “, IET Computer Vision, 2017
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[1] G.Pagnutti, L. Minto, P. Zanuttigh

CON:s:

« NURBS fitting very slow
« Many hand-tuned

thresholds (on depth,
color, normals, NURBS
fitting)

. "Segmentation and Semantic Labeling of RGBD Data with Convolutional Neural Networks and Surface Fitting “, IET Computer Vision, 2017



Proposed Framework

PRE-PROCESSING OVERSEGMENTATION AND CLASSIFICATION
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Proposed Framework - Preprocessing

PRE-PROCESSING
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Proposed Framework — Oversegmentation

PRE-PROCESSING OVERSEGMENTATION AND CLASSIFICATION
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Proposed Framework — Region Merging
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Proposed Framework

MERGE PHASE _
N >
Discard |"° _descriptor ™ ]
CNN Select two
; adjacent
(merging) 5 segments |
Sj —
descriptor

terative merging procedure

> Select segments with b; ; > Tg;,
» CNN classifier o decide whether the two segments will be joined or not
« If merged: new segment of the union is created and list updated

« If not merged: remove segments from the list



CNN for Region Merging - PDFs -

PDFs
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CNN for classification (6 conv. layers, symm. padding, 2x2 maxpool, RelLU)

input: 2 outputs of softmax layer of semantic CNN (15 channels each candidate)
training: 50 epochs, batch size of 32 samples, CE & L2 regularization losses, Adam
with Ir = 1074, regularization constant = 1073, T,;,,, = 0.8

training time: about 11 hours on a NVIDIA Titan X GPU



CNN for Region Merging - Normals -

normals _
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CNN for classification (6 conv. layers, symm. padding, 2x2 maxpool, RelLU)

input: 2 surface normals of the 2 candidate segments (3 channels each)

training: 50 epochs, batch size of 32 samples, CE & L2 regularization losses, Adam
with Ir = 1073, regularization constant = 5-107°, Ty;,,, = 0.75

training time: about 3 hours on a NVIDIA Titan X GPU

- PDFs richer descriptions, while normals are faster with limited impact on the final accuracy



Experimental Results




NYUDvZ Dataset [2] -

1449 depth maps + color images of indoor scenes with Kinect sensor
RGB raw depth GT

training set: 795 scenes
test set: 654 scenes

894 classes clustered in 15 classes as [3]

unknown & unlabeled classes excluded

[2] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. 2012. Indoor segmentation
and support inference from RGBD images. ECCV. Springer.

[3] C. Couprie, C. Farabet, L. Najman, and Y. LeCun. 2013. Indoor semantic
segmentation using depth information. ICLR.



Merging CNN — Ground Truth Generafion
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m Randomly select 10 couples of adjacent segments in each image

m Assign label 1 if more than 85% of the union of the segments belongs to same object
in the semantic segmentation ground truth

m Assign label O otherwise

Selection of Selection of an Ground fruth
segment adjacent segment examination

Region appears to be uniform

lapel |



Merging CNN — GT Ambiguities

m Examples of ambiguities in ground truth:
® |nconsistent labeling

m Obijects not labeled Bed
Objects

LI

Ceiling

Floor

Picture/Deco

Sofa

Table

missing




Merging CNN - Results -

Predicted: Merge Predicted: Not Merged
GT. Merge GT: Not Merged

m Good oversegmentation (inter-uniformity)



Merging CNN - Results n

Predicted: Not Merged Predicted: Merge
GT. Merge GT: Not Merged
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® Bad oversegmentation




Qualitative Results

Color view Semantic CNN Pagnutti et al. [1] Our Approach Ground Truth

Ceiling

Floor

Picture/Deco

Sofa

Table

[1] G.Pagnutti, L. Minto, P. Zanuttigh, "Segmentation and Semantic Labeling of RGBD Data with Convolutional Neural Networks and Surface Fitting “, IET Computer Vision, 2017



Quantitative Results
Approach

Pixel Accuracy Class Accuracy

Couprie et al. [4]
Hickson et al. [5]
A. Wang et al. [6]
J. Wang et al. [7]
A. Hermans et al. [8]
D. Eigen et al. [9]
Pagnutti et al. [1]

52.4%
53.0%
46.3%
54.8%
54.2%
75.4%
67.2%

36.2%
47.6%
42.2%
52.7%
48.0%
66.9%
54.4%

Semantic CNN
Our method (normals)
Our method (PDFs)

64.4%
66.6%
67.2%

51.7%
53.6%
54.5%

[1] G.Pagnutti, L. Minto, P. Zanuttigh, "Segmentation and Semantic Labeling of RGBD Data with Convolutional Neural Networks and Surface Fitting *, IET Computer Vision, 2017

[4] C. Couprie, C. Farabet, L. Najman, and Y. Lecun. 2014. Convolutional nets and watershed cuts for real-time semantic Labeling of RGBD videos. JMLR 15, 1 (2014), 3489-3511.

[5] S. Hickson, I. Essa, and H. Christensen. 2015. Semantic Instance Labeling Leveraging Hierarchical Segmentation. WCACV. 1068-1075

[6] A. Wang, J. Lu, G. Wang, J. Cai, and T. Cham. 2014. Multi-modal unsupervised feature learning for RGB-D scene labeling. ECCV. 453-467.

[7] J. Wang, Z. Wang, D. Tao, S. See, and G. Wang. 2016. Learning Common and Specific Features for RGB-D Semantic Segmentation with Deconvolutional Networks. ECCV. 664-679.
[8] A. Hermans, G. Floros, and B. Leibe. 2014. Dense 3D semantic mapping of indoor scenes from rgb-d images. ICRA. 2631-2638.

[9] D. Eigen and R. Fergus. 2015. Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. ICCV. 2650-2658.



Quantitative Results n

Approach Pixel Accuracy Class Accuracy Inference Time”
Pagnutti et al. [1] 67.2% 54.4% 58 ms
Our method (normals) 66.6% 53.6% 2 ms
Our method (PDFs) 67.2% 54.5% 10 ms

*on a Intel Core i7-8700K CPU @3.70GHz with NVIDIA GeForce GTX 1070 GPU
m Same over-segmentation

m Similar results

® Much faster
® no surface fitting
m [N [1] time heavily depends on the area to be fit, here it is constant!

m Fewer hand-tuned thresholds (1 vs. 4)

[1] G.Pagnutti, L. Minto, P. Zanuttigh, "Segmentation and Semantic Labeling of RGBD Data with Convolutional Neural Networks and Surface Fitting *, IET Computer Vision, 2017
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Conclusions - Future Work n

m Agnostic to the over-segmentation method
B yse other methods like superpixels

m Semantic CNN very simple
B use more complex one (less speed)

m CNN useful for region merging
m focus the atftention on the edges of the candidates

" Smaller computational time
m yseful for free-navigation and for other fields
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