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Semantic Segmentation
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¡ Segmentation + labeling (pixel-wise classification)

¡ Deep learning and consumer depth sensors

¡ Very useful for free navigation systems to explore the surroundings
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Proposed Framework
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Proposed Framework
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Use normalized cuts spectral clustering extended for RGBD 
à but bias toward region of similar sizes

[1] G.Pagnutti, L. Minto, P. Zanuttigh, "Segmentation and Semantic Labeling of RGBD Data with Convolutional Neural Networks and Surface Fitting “, IET Computer Vision, 2017

AIM: propose CNN for region merging and refine boundaries of shapes

Then 2 steps procedure:

¡ Initial over-segmentation to properly separate objects

¡ Region merging procedure to avoid over-segmentation

Framework derived from [1] but much faster and simpler



Framework of [1]
7

[1] G.Pagnutti, L. Minto, P. Zanuttigh, "Segmentation and Semantic Labeling of RGBD Data with Convolutional Neural Networks and Surface Fitting “, IET Computer Vision, 2017

Scene Segmentation Driven by Deep Learning and Surface Fitting 3

in [17] and in the refined version of the approach of [16]. Finally dynamic pro-
gramming has been used in [28] to extract the planar surfaces in indoor scenes.

Machine learning techniques have been used specially for the task of semantic
segmentation where a label is also associated to each segment. In [24] a Markov
Random Fields superpixel segmentation is combined with a tree-structured ap-
proach for scene labeling. Conditional Random Fields have been employed in
[7] together with mutex constraints based on the geometric structure of the
scene. Deep learning techniques and in particular Convolutional Neural Net-
works (CNN) have also been used for this task [19, 4, 20]. For example a mul-
tiscale CNN has been used in [4] while the method of [20] is based on Fully
Convolutional Networks. Another approach based on deep learning is [14], that
exploits a CNN applied on features extracted from the geometry description.
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Fig. 1. Overview of the proposed approach

3 General Overview

The proposed algorithm can be divided into three main steps as depicted in
Fig. 1. The color image and the depth map are firstly converted into a set of
9D vectors containing the 3D position, the orientation information and the color
coordinates in the CIELab color space of each sample. Then we perform an
over-segmentation of the scene based on the joint usage of the three sources of
information inside a spectral clustering framework derived from [6] (see Section
4). In parallel, the color and orientation data are also fed to a CNN classifier

CONs:
• NURBS fitting very slow

• Many hand-tuned 

thresholds (on depth, 

color, normals, NURBS 

fitting)



Proposed Framework
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PROs:
• Much faster

• Fewer thresholds

• Same accuracy



Proposed Framework - Preprocessing
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¡ 3 channels for 3D location

¡ 3 channels for surface normals

¡ 3 channels for color 
representation 
à CIELab for perceptual 
uniformity

¡ Normalization to achieve 
consistent representation 
across the 3 domains. 



Proposed Framework – Oversegmentation
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¡ Over-segmentation with normalized cuts 
spectral clustering with Nystrom 
acceleration: 9D input

¡ CNN for the semantic labeling of each 
segment and for guiding the region 
merging process

¡ 9 conv layers

¡ 15 classes

¡ very simple



Proposed Framework – Region Merging
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¡ Compute adjacency 
map of the segments

¡ Compute similarity 
between adjacent 
segment descriptors 
with Bhattacharyya 
coefficient:

𝑏",$ = ∑' 𝑠"'𝑠$'
�

𝑡: class scores
𝑠": descriptors (~PDFs)

¡ Sort list on the basis of 
𝑏",$



Proposed Framework
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Iterative merging procedure 
Ø Select segments with 𝑏",$ > 𝑇-".
Ø CNN classifier to decide whether the two segments will be joined or not

• If merged: new segment of the union is created and list updated

• If not merged: remove segments from the list



CNN for Region Merging - PDFs
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CNN for classification (6 conv. layers, symm. padding, 2x2 maxpool, ReLU)

input: 2 outputs of softmax layer of semantic CNN (15 channels each candidate)

training: 50 epochs, batch size of 32 samples, CE & L2 regularization losses, Adam 

with 𝑙𝑟 = 1034, regularization constant = 1035, 𝑇-". = 0.8

training time: about 11 hours on a NVIDIA Titan X GPU
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CNN for classification (6 conv. layers, symm. padding, 2x2 maxpool, ReLU)

input: 2 surface normals of the 2 candidate segments (3 channels each)

training: 50 epochs, batch size of 32 samples, CE & L2 regularization losses, Adam 

with 𝑙𝑟 = 1035, regularization constant = 5 ⋅ 103:, 𝑇-". = 0.75

training time: about 3 hours on a NVIDIA Titan X GPU

CNN for Region Merging - Normals
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Experimental Results
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RGB raw depth GT

NYUDv2 Dataset [2]
16

1449 depth maps + color images of indoor scenes with Kinect sensor

training set: 795 scenes
test set: 654 scenes

894 classes clustered  in 15 classes as [3]

unknown & unlabeled classes excluded

[2] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. 2012. Indoor segmentation 
and support inference from RGBD images. ECCV. Springer.
[3] C. Couprie, C. Farabet, L. Najman, and Y. LeCun. 2013. Indoor semantic 
segmentation using depth information. ICLR. 



Merging CNN – Ground Truth Generation
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Need a dataset to train 
the merging CNN

¡ Randomly select 10 couples of adjacent segments in each image
¡ Assign label 1 if more than 85%	of the union of the segments belongs to same object 

in the semantic segmentation ground truth
¡ Assign label 0 otherwise
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Merging CNN – GT Ambiguities
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¡ Examples of ambiguities in ground truth:
¡ Inconsistent labeling
¡ Objects not labeled

missing

Region Merging Driven by D.L. for RGB-D Segmentation and Labeling ICDSC 2019, September 9–11, 2019, Trento, Italy

Color view Semantic CNN Pagnutti et al. [21] Our Approach Ground Truth

Bed

Objects
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Furniture
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Floor
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Table

Wall

Windows

Books

Monitor/TV

Unknown

Figure 3: Semantic labeling of 4 sample scenes from the NYUDv2 dataset (images 465, 947, 1256 and 1349). The �gure shows
the color images, the labeling from the semantic CNN, the re�ned labeling obtained with [21] and by exploiting the proposed
approach and �nally the ground truth labels (best viewed in color).

6 CONCLUSION AND FUTUREWORK
In this paper we proposed a novel region merging strategy for
RGB-D data segmentation where the decision on the segments to
be merged is driven by a CNN binary classi�er that replaces de-
terministic criteria, along with several free parameters, used up
to now. We showed how the proposed classi�er is able to reliably
select the merging operations to be performed and we �tted it into
an iterative region merging framework for semantic segmentation,
although the framework allows wider applications where candidate
segments, of arbitrary nature, need to be evaluated for merging.
Experimental results show how it obtains the same performance of
complex deterministic schemes with a smaller computation time
and without using several hand-tuned thresholds. The faster com-
putation time and the better generalization properties allow to use
this approach in challenging tasks where a reliable semantic under-
standing of the scene is required, like in autonomous driving or in
free navigation systems.

Further research will be devoted to combining the proposed
approach with state-of-the-art deep learning approaches, to bet-
ter focus the attention of the CNN on the boundary between the
candidate segments and to its application in di�erent �elds where
region merging strategies can be exploited. We will also extend
the approach to video information, that is typical of autonomous
navigation applications, by introducing temporal constraints into
the proposed framework.

7 ACKNOWLEDGMENTS
We gratefully acknowledge NVIDIA for the donation of the GPU
used for training the CNN and Gianluca Agresti for the insightful
discussion.
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Predicted: Merge
GT: Merge

19

Predicted: Not Merged
GT: Not Merged

¡ Good oversegmentation (inter-uniformity)
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20

Predicted: Not Merged
GT: Merge

Predicted: Merge
GT: Not Merged

¡ Bad oversegmentation
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Figure 3: Semantic labeling of 4 sample scenes from the NYUDv2 dataset (images 465, 947, 1256 and 1349). The �gure shows
the color images, the labeling from the semantic CNN, the re�ned labeling obtained with [21] and by exploiting the proposed
approach and �nally the ground truth labels (best viewed in color).

6 CONCLUSION AND FUTUREWORK
In this paper we proposed a novel region merging strategy for
RGB-D data segmentation where the decision on the segments to
be merged is driven by a CNN binary classi�er that replaces de-
terministic criteria, along with several free parameters, used up
to now. We showed how the proposed classi�er is able to reliably
select the merging operations to be performed and we �tted it into
an iterative region merging framework for semantic segmentation,
although the framework allows wider applications where candidate
segments, of arbitrary nature, need to be evaluated for merging.
Experimental results show how it obtains the same performance of
complex deterministic schemes with a smaller computation time
and without using several hand-tuned thresholds. The faster com-
putation time and the better generalization properties allow to use
this approach in challenging tasks where a reliable semantic under-
standing of the scene is required, like in autonomous driving or in
free navigation systems.

Further research will be devoted to combining the proposed
approach with state-of-the-art deep learning approaches, to bet-
ter focus the attention of the CNN on the boundary between the
candidate segments and to its application in di�erent �elds where
region merging strategies can be exploited. We will also extend
the approach to video information, that is typical of autonomous
navigation applications, by introducing temporal constraints into
the proposed framework.
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11 hours for the one exploiting PDFs (where the input vectors have
a higher dimensionality) on a NVIDIA Titan X GPU. Inspecting the
behavior of the algorithm it is possible to see that the accuracy is
good on large segments but there are some issues on couples with
small segments, which have a limited associated information and
are intrinsically di�cult to classify.

5 EXPERIMENTAL RESULTS
The performance of the proposed approach have been evaluated on
the NYUDv2 dataset [27]. This dataset contains 1449 depth maps
and color images of indoor scenes acquired with a �rst generation
Kinect sensor divided into a training set with 795 scenes and a test
set with the remaining 654 scenes. For results evaluation we used
the ground truth labels from [12], and we clustered the original
894 categories into 15 classes using the mapping of [6]. As done
in competing works [6, 10, 21] we excluded from the evaluation of
the results the unknown and unlabeled classes.

Approach Pixel Accuracy Class Accuracy
Couprie et al. [4] 52.4% 36.2%
Hickson et al. [5] 53.0% 47.6%
A. Wang et al. [6] 46.3% 42.2%
J. Wang et al. [7] 54.8% 52.7%

A. Hermans et al. [8] 54.2% 48.0%
D. Eigen et al. [9] 75.4% 66.9%
Pagnutti et al. [1] 67.2% 54.4%
Semantic CNN 64.4% 51.7%

Our method (normals) 66.6% 53.6%
Our method (PDFs) 67.2% 54.5%

Table 1: Average pixel and class accuracies on the test set of
the NYUDv2 dataset for some state-of-the-artmethods from
the literature and for the proposed method.

The numerical results for the semantic segmentation task are
shown in Table 1. We report both the per-pixel accuracy and the
average class accuracy (the latter is smaller since less frequent
classes are also harder to recognize in many cases). The proposed
approach using the PDFs obtains a mean pixel accuracy of 67.2%
and a class accuracy of 54.5%.

To evaluate this result, �rst of all notice that the output of the
classi�cation performed by the initial semantic CNN of Section
3 has a mean pixel accuracy of 64.4% and a mean class accuracy
of 51.7%. The improved accuracy shows how the segmentation
procedure allows to re�ne the classi�cation leading to more accu-
rate boundaries and removing artifacts and noise from the original
classi�cation.

A second interesting comparison is with the approach of [21],
that exploits the same initial semantic CNN together with a complex
deterministic region merging procedure based on surface �tting
clues. That approach has an average pixel accuracy of 67.2% and a
class accuracy of 54.4%. Notice that the proposed method has very
similar performance, indeed it achieves even slightly higher class
accuracy, but it is much simpler, faster and, especially, does not rely
on several hand-tuned thresholds as [21].

These considerations can also be evaluated visually by compar-
ing the images in Fig. 3, where the results on four sample scenes
from the test set are shown. In particular, it is possible to appreci-
ate how the merging procedure re�nes the semantic segmentation
output leading to more accurate boundaries (e.g., look at the bed
in the second row or the table in the fourth row). Furthermore by
comparing the third and the fourth columns it is possible to see that
the proposed approach achieves similar results compared to [21].
There are some minor re�nements but there is no clear winner,
although the proposed approach is much simpler and faster.

Table 1 shows also the comparison with some competing ap-
proaches for which the results in the 13 classes setting are available.
Notice how the proposedmethod is able to get good results and com-
pete with more complex deep learning architectures even starting
from the initial classi�cation performed by a simple CNN. Recent
more complex deep learning architectures, e.g., [10], have a higher
semantic accuracy, however we do not aim at proposing advanced
deep learning models for semantic segmentation. The target of the
proposed work, instead, is to show how a deep neural network
can e�ciently control a region merging process and how this idea
can be used to improve the accuracy of an initial semantic segmen-
tation, even if performed by simple and not extremely powerful
approaches. It is noticeable that by re�ning the boundaries with
segmentation information it is possible to obtain an accurate repre-
sentation of the shapes without using multi-resolution networks,
skip connections, auto-encoders or other advanced deep network
models.

It is possible to evaluate the performance of the proposed ap-
proach also using segmentation metrics (i.e., looking only at the
segments’ shapes without considering the class labels). Two com-
monly used metrics are the Rand Index (RI) and the Variation of
Information (VoI) (see [1] for details on the metrics). The mean RI
score (higher is better) on the test set increased from 0.82 of the
CNN output to 0.87, while the mean VoI (lower is better) decreased
from 2.77 to 2.00.

Finally we present some observation on the computation time,
since one of the main claims is that this approach is faster than the
previous deterministic method. We focus on the iterative region
merging procedure: the proposed deep network can be evaluated in
22ms if normals are employed or 101ms if PDFs are used on an Intel
Core i7-8700K CPU @3.70GHz. By using the GPU for the inference
the computation time can be strongly reduced: for example, on a
NVIDIA GeForce GTX 1070 the inference call requires on average
2ms in case of normals, and 10ms in case of PDFs. As a comparison
the method of [21] based on surface �tting required on average
58ms for each evaluation. Notice that the oversegmentation and
semantic classi�cation steps are the same for both methods (and
can be replaced with other superpixel segmentation schemes or
di�erent deep networks). Another interesting aspect is related to
the stability of the proposed approach, which always requires the
same amount of time for each couple of segments, while the com-
putation time of [21] is heavily dependent on the area to be �tted.
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* on a Intel Core i7-8700K CPU @3.70GHz with NVIDIA GeForce GTX 1070 GPU 

¡ Same over-segmentation

¡ Similar results

¡ Much faster 
¡ no surface fitting
¡ In [1] time heavily depends on the area to be fit, here it is constant!

¡ Fewer hand-tuned thresholds (1 vs. 4)

Region Merging Driven by D.L. for RGB-D Segmentation and Labeling ICDSC 2019, September 9–11, 2019, Trento, Italy

Approach Pixel Accuracy Class Accuracy Inference Time*
Pagnutti et al. [1] 67.2% 54.4% 58 ms

Our method (normals) 66.6% 53.6% 2 ms
Our method (PDFs) 67.2% 54.5% 10 ms

Table 1: Average pixel and class accuracies on the test set of the NYUDv2 dataset for some state-of-the-art methods from the
literature and for the proposed method.

Color view Semantic CNN Pagnutti et al. [21] Our Approach Ground Truth

Figure 3: Semantic labeling of 4 sample scenes from the NYUDv2 dataset (images 465, 947, 1256 and 1349). The �gure shows
the color images, the labeling from the semantic CNN, the re�ned labeling obtained with [21] and by exploiting the proposed
approach and �nally the ground truth labels (best viewed in color).

candidate segments and to its application in di�erent �elds where
region merging strategies can be exploited. We will also extend
the approach to video information, that is typical of autonomous
navigation applications, by introducing temporal constraints into
the proposed framework.
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¡ Semantic CNN very simple

¡ CNN useful for region merging

¡ Smaller computational time

¡ use other methods like superpixels

¡ use more complex one (less speed)

¡ focus the attention on the edges of the candidates

¡ useful for free-navigation and for other fields
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