

Università degli Studi di Padova

Game Theoretic Analysis of Road User Safety Scenarios Involving Autonomous Vehicles

Department of Information Engineering

Umberto Michieli

Leonardo Badia

11/09/2018

Rise of Autonomous Vehicles (AVs)

Gartner Hype Cycle for Emerging Technologies, 2017

Time

gartner.com/SmarterWithGartner

Source: Gartner (July 2017) © 2017 Gartner, Inc. and/or its affiliates. All rights reserved.

Rise of Autonomous Vehicles (AVs)

Gartner Hype Cycle for Emerging Technologies, 2017

gartner.com/SmarterWithGartner

Source: Gartner (July 2017) © 2017 Gartner, Inc. and/or its affiliates. All rights reserved.

Transition to AVs

Smooth transition

Need to overcome many conflicts

PRO

1. Accidents \downarrow

2. Less stressful time

3. Less road congestion

4. Decreased emissions

5. Eventually faster than human-drivers

CONS

1. Social acceptance

CONS

- 1. Social acceptance
- 2. Technological issues
 - snow/rain
 - yellow-lights
 - partial occlusion
 MOORE'S LAW
- 3. Interactions w/ humans
 - road regulations
 - AVs are cautious

Expected Conclusions:

- Game Theory extensions
- Accidents \downarrow as share of AVs \uparrow
- Need for new traffic regulations
- Need for communication systems

- *Players* have different *utilities*
- Distinguishable set of actions
- Statistical generality

Proposed models: 1. Cyclist vs. Vehicle on Zebra Crossing

2. Pedestrian vs. Vehicle

8

 $t_{c} < t_{a} < t_{c}'$ $t_a > t_c'$ $t_a < t_c$ СК CB

NE shifts:

2. Pedestrian vs. Vehicle

- Game theory useful for human-AV interactions
 - \rightarrow improve realism

Game theory useful for human-AV interactions

 \rightarrow improve realism

- Models are lightweight
 - → embedding into communication systems and traffic simulators

Game theory useful for human-AV interactions

 \rightarrow improve realism

- Models are lightweight
 - → embedding into communication systems and traffic simulators
- Accident rate \downarrow , dominance of pedestrians

 \rightarrow new regulations needed, then new game analysis

Thank you for the attention!

Questions?