
Samsung Research

TASK:

Class-Incremental Online Continual Learning

DESIDERATA:

- Robust to Test Time Variations
- Data-Efficient (Few-Shot Training)
- Targeting Limited-**Resource Devices**

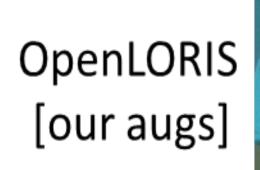
Method

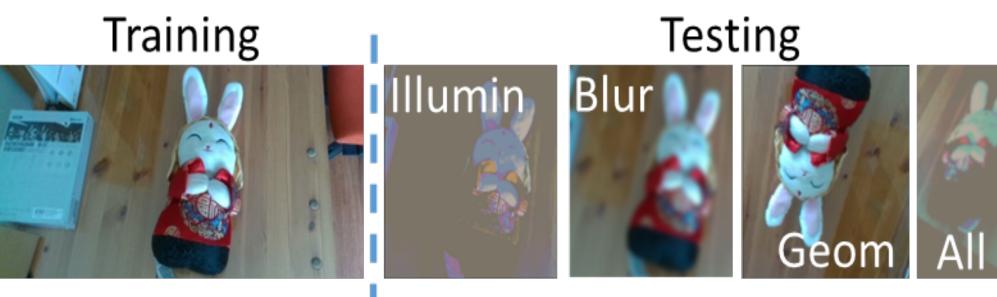
Three Main Components

- 1) Feature Extractor
- Pre-trained on server on public data
- Frozen during on-device adaptation

2) Pooling Scheme

- Concatenation of the first R statistical moments (e.g., R=3)
- Richer feature space to extract cues during a single-epoch training.


3) Classifier


- Lightweight Online Continual Learning Method
- We use SLDA [1] on the enriched feature space.
- SLDA estimates a Gaussian model for each class over the feature space with a class-wise mean (prototype) and shared-across-classes variance.

Datasets employed in our work

Right-hand side table summarizes differences between train and test sets.


[Text within squared brackets]: properties change when our augmentations are applied

Online Continual Learning for Robust Indoor Object Recognition

Umberto Michieli, Mete Ozay Samsung Research UK - <u>n.surname@samsung.com</u>

	Different Conditions partial [√]	Few Shot	Augs Type Real [Mix]
	partial [√]	partial	Real [Mix]
	× [√]	✓	Real [Mix]

Z. Real Other-Domain Few-Shot								
Averaged accuracy over 7 backbones (3 CNNs and 4 transformers)								
CL method	OpenLORIS-	F-SIOL-310 (5-	F-SIOL-310 (10-					
CLINEUIUU	small	shots)	shots)					
FT	7.6	21.0	17.7					
Perceptron	11.9	16.2	17.2					
SNB	5.3	9.7	8.3					
SOvR	28.9	43.5	41.8					
NCM/CBCL	41.2	93.3	94.7					
SQDA	40.3	94.1	96.0					
iCARL	42.2	47.8	59.2					
iCARL (2pc)	39.7	48.0	59.4					
SLDA	46.4	95.0	97.9					
RobOCLe _{SLDA} (ours)	47.3	96.0	98.3					
(Δ _R [%])	(+1.8)	(+19.5)	(+17.5)					

		NCM						RobOCLe _{NCM} (ours)						
	tr \downarrow te \rightarrow	clean	illum	geom	noise	all	Avg OD	clean	illum	geom	noise	all	Avg OD	$\Delta_R^{\rm OD}$
	clean	79.47	35.11	73.43	66.57	19.49	48.65	80.31	33.13	73.69	68.38	19.74	48.73	(+0.2)
	illum	30.78	40.58	33.00	29.12	30.00	30.73	30.82	35.00	35.17	30.65	31.22	31.96	(+1.8)
	geom	78.01	36.62	79.19	68.73	23.31	51.67	78.70	37.05	78.64	68.87	24.32	52.24	(+1.2)
110	noise	73.67	36.37	66.27	75.64	25.41	50.43	73.84	36.58	68.55	76.51	25.56	51.13	(+1.4)
1-11A	all	15.32	32.27	21.58	15.25	31.79	21.11	17.05	32.26	20.98	18.21	24.77	22.13	(+1.3)
>		SLDA						RobOCLe _{SLDA} (ours)						
	clean	98.69	38.30	92.94	90.09	21.49	60.71	99.73	40.69	95.04	93.03	22.53	62.82	(+5.4)
	illum	83.68	77.13	72.86	72.39	50.58	69.88	86.13	80.65	77.00	76.19	52.56	72.97	(+10.3
	geom	97.72	46.72	96.86	89.44	27.98	65.46	98.74	45.87	98.10	92.25	28.08	66.23	(+2.2)
	noise	97.42	40.08	89.87	97.19	26.21	63.40	98.82	41.90	93.41	98.68	26.69	65.21	(+4.9)
	all	71.27	68.15	66.03	68.67	65.09	68.53	72.81	71.36	71.58	71.59	68.43	71.84	(+10.5)

RobOCLe features:

Results

1. Same-Domain

OpenLORIS dataset.

Averaged accuracy over 16 backbones (9 CNNs and 7 transformers)

CL method	Averaged Accuracy					
FT	87.0					
Perceptron	82.4					
SNB	34.4					
SOvR	54.2					
NCM/CBCL	80.1					
SQDA	36.4					
iCARL	94.7					
iCARL (2pc)	92.5					
SLDA	97.7					
RobOCLe _{SLDA} (ours)	99.2					
(Δ _R [%])	(+65.8)					

2. Real Other-Domain Few-Shot

3. Synthetic Other-Domain Few-Shot

OpenLORIS with ViT-L16

Conclusions

New method: RobOCLe, a data- and parameter-efficient online continual learning method with robust performance under test-time corruptions.

• *Lightweight* solution: frozen feature extractor + class-conditional Gaussian modelling of feature space

• *High-order statistical moments* of embedded features from inputs • *Robust* recognition in a variety of scenarios, using several backbones, low-shot setups, per-step accuracy, and controlled train/test augmentation on both same-domain and other-domain data