Samsung Research

Abstract

Model Pruning at Initialization (Pal) trains sparse networks to comparable accuracy with respect to their dense counterparts. We investigate data-free Pal based on the expansion properties of network graphs. In particular,

- > We propose a stronger model (**RReg**) for generating expanders, which we then use to sparsify a variety of mainstream CNN architectures;
- \succ We demonstrate that accuracy is an increasing function of expansion in a sparse model;
- > We analyse the superior performance of **RReg** over the strong naïve random baseline and alternative models.

Pruning at Initialization (Pal) Many pruning paradigms

Pruning paradigm	Weight source	Mask source	
Pruning after training	Converged net	Converged net	Y
Pal – Sparse Selection	Initialized net	Initialized net	
Pal – Sparse Training #1	Initialized net	Converged net	
Pal – Sparse Training #2	Initialized net	Initialized net	

Our Focus: Data-Free Pruning at Initialization of randomly selected weights.

Our Three Steps:

- 1) Initialize random weights
- 2) Compute pruning mask
- 3) Train the sparse network to convergence

Data-Free Model Pruning at Initialization via Expanders James Stewart, Umberto Michieli and Mete Ozay Samsung Research UK

Train sparse network?

Yes (fine-tune)

No

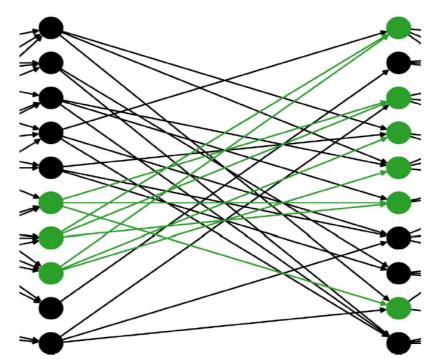
Yes

Yes

Computing the pruning mask via expander graphs

To capture the graph structure of a neural network, we model individual layers as bipartite graphs, as in [1].

Definition (α -expander). Let $d \in \mathbb{N}_{\geq 3}$ (degree) and $\alpha \in \mathbb{R}_{\geq 0}$. We say that a *d*-regular bipartite graph $G = (V_G^0, V_G^1, E_G)$ is an α -expander if, $\forall i \in \{0,1\}$ and $\forall S \subseteq V_G^i$ with $|S| \leq |V_G^i|/2$, we have that $|\partial S| \ge \alpha |S|$, where ∂S denotes the set of vertices connected to S.



Main benefits:

 \rightarrow Expander graphs are simultaneously **sparse** yet **highly connected**.

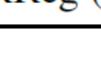
- subsets of neurons to interact with a larger subset of other neurons,
- higher **feature shareability** and **flow of information** through the network

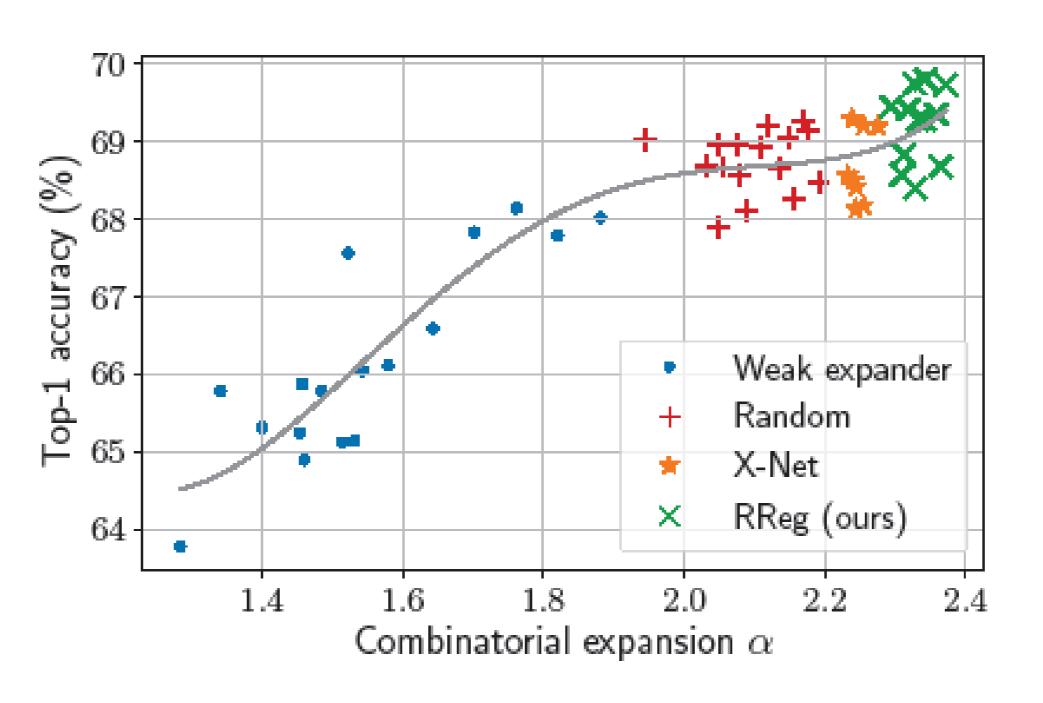
Methods to achieve expansion property:

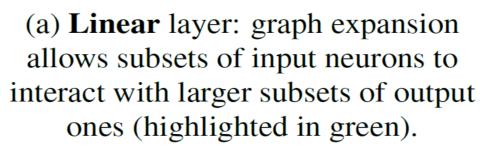
For fixed *n* and *d* :

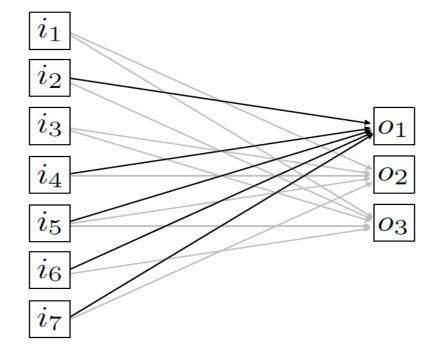
- Random model [2] connects every pair of vertices with an edge independently with probability 2d/n.
- X-Net [1] chooses a random *n*-vertex *d*-leftregular (*i.e.*, every left vertex has degree d) graph uniformly at random from the set of all such graphs.
- Rreg (ours) chooses a random *n*-vertex *d*-regular graph uniformly at random from the set of all such graphs.

Model	Regularity	lpha	Edges
Random	random	low	$d \cdot n/2$
X-Net	d-left-regular	medium	$d \cdot n/2$
RReg (ours)	d-regular	high	$d \cdot n/2$





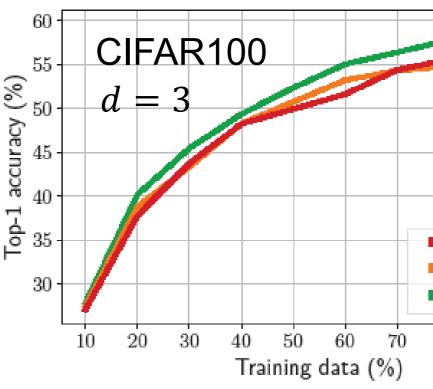




(b) **Conv** layer: a filter is applied to input channels $\{i_j\}_{j=2,4,5,6,7}$, to obtain output channel o_1 , as determined by the graph structure.

Results

PP: remaining parameters Δ : relative gain vs. rando



Tiny-ImageNet:

	VG	G16	М	N	RN	18	RN	34	RN	50	RN	101	RN	152	WRN	28-10	WRN	40-14	Av	g
Method	PP [%]	Acc	PP [%]	Acc	PP [%]	Acc	PP [%]	Acc	PP [%]	Acc	PP [%]	Acc	PP [%]	Acc	PP [%]	Acc	PP [%]	Acc	Acc	$\Delta_{\rm R}$
Original	100	40.03	100	54.75	100	53.88	100	56.95	100	57.08	100	60.13	100	61.29	100	46.27	100	49.04	53.27	-
Random [23] X-Net [25] RReg (ours)	0.79 (±0.03)	22.84 23.20 25.31	19.33 (±0.10)	21.81 19.49 34.26	3.45 (±0.05)	44.02 42.69 44.30	2.33 (±0.02)	47.34 46.97 46.30	14.24 (±0.06)	46.77 45.36 48.27	8.52 (±0.08)	49.56 49.45 51.04	6.62 (±0.08)	49.05 49.47 51.21	1.04 (±0.02)	35.5 35.57 36.5 0	0.65 (±0.01)	40.21	39.63 39.16 41.94	-1.20

RReg sparse network can achieve higher accuracy at a same number of parameters than their shallower and narrower fully-connected counterparts.

Conclusion

- properties.
- expansion

[1] Prabhu et al. Deep expander networks: Efficient deep networks from graph theory, ECCV, 2018. [2] Liu et al. The unreasonable effectiveness of random pruning: Return of the most naive baseline for sparse training, ICLR, 2022.

JUNE 18-22, 2023 VANCOUVER. CANADA

ers [%]			(CIFAR	.10	CIFAR100			
dom	Method	PP	d	Acc	Δ_{R}	$\Delta_{\rm RAR}$	Acc	Δ_{R}	$\Delta_{\rm RAR}$
	Original	100	-	94.24	-	-	74.16	-	-
	Random [23]	13.79		93.50	-	-	72.97	-	-
	X-Net [25]		60	93.46	-0.04	-0.62	72.73	-0.33	-0.89
Random X-Net RReg (ours)	RReg (ours)	± 0.11		93.50	+0.00	+0.61	72.72	-0.34	-0.04
	Random [23]	7.07		92.51	-	-	69.81	-	-
	X-Net [25]		30	92.65	+0.15	+1.87	69.80	-0.01	-0.03
	RReg (ours)			93.05	+0.58	+5.44	70.15	+0.49	+1.16
	Random [23]	3.62		91.30	-	-	66.58	-	-
	X-Net [25]	± 0.15	15	91.38	+0.09	+0.92	66.81	+0.35	+0.69
	RReg (ours)	±0.15		91.50	+0.22	+1.39	67.72	+1.71	+2.74
	Random [23]	0.79		85.81	-	-	56.98	-	-
80 90 100	X-Net [25]		3	86.06	+0.29	+1.76	56.69	-0.51	-0.67
	RReg (ours)	± 0.03		87.02	+1.41	+6.89	59.61	+4.62	+6.74

K	Туре	Model	Р	Acc	Δ_{R}	$\Delta_{\rm RAR}$	Model	Р	Acc	$\Delta_{\rm R}$	$\Delta_{\rm RAR}$
	Orig	RN50	23.9	59.36	-	-	WRN28-4	5.9	43.16	-	-
	RReg	RN 152	21.9	62.01	+4.46	+6.52	WRN28-10	5.9	43.76	+1.39	+1.06

✓ We proposed RReg to generate sparse layers with optimal expansion

✓ We showed that classification accuracy is an increasing function of graph

✓ RReg shows consistent improvement over strong baselines [1-2].