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Abstract
Model Pruning at Initialization (PaI) trains sparse networks to comparable
accuracy with respect to their dense counterparts. We investigate data-free
PaI based on the expansion properties of network graphs. In particular,
 We propose a stronger model (RReg) for generating expanders, which we

then use to sparsify a variety of mainstream CNN architectures;
 We demonstrate that accuracy is an increasing function of expansion in a

sparse model;
 We analyse the superior performance of RReg over the strong naïve

random baseline and alternative models.

Pruning at Initialization (PaI)
Many pruning paradigms

Our Focus: Data-Free Pruning at Initialization of randomly selected weights.

Our Three Steps:
1) Initialize random weights
2) Compute pruning mask
3) Train the sparse network to convergence

Computing the pruning mask via expander graphs
To capture the graph structure of a neural network, we model individual 
layers as bipartite graphs, as in [1].

Main benefits:
 Expander graphs are simultaneously sparse yet highly connected. 

– subsets of neurons to interact with a larger subset of other neurons,
– higher feature shareability and flow of information through the network

Methods to achieve expansion property:
For fixed n and d :

Results
PP: remaining parameters [%]
Δ: relative gain vs. random

Tiny-ImageNet:

RReg sparse network 
can achieve higher 
accuracy at a same 
number of parameters 
than their shallower and narrower fully-connected counterparts.

Conclusion
We proposed RReg to generate sparse layers with optimal expansion 

properties.

 We showed that classification accuracy is an increasing function of graph 
expansion

RReg shows consistent improvement over strong baselines [1-2].

[1] Prabhu et al. Deep expander networks: Efficient deep networks from graph theory, ECCV, 2018.
[2] Liu et al. The unreasonable effectiveness of random pruning: Return of the most naive baseline 
for sparse training, ICLR, 2022.

Pruning paradigm Weight 
source

Mask
source

Train sparse 
network?

Pruning after training Converged 
net

Converged 
net Yes (fine-tune)

PaI – Sparse Selection Initialized
net

Initialized 
net No

PaI – Sparse Training #1 Initialized
net

Converged 
net Yes

PaI – Sparse Training #2 Initialized
net

Initialized 
net Yes

Definition (𝛼𝛼-expander). Let 
𝑑𝑑 ∈ ℕ≥3 (degree) and 𝛼𝛼 ∈ ℝ≥0. 
We say that a 𝑑𝑑-regular 
bipartite graph 𝐺𝐺 = (𝑉𝑉𝐺𝐺0,𝑉𝑉𝐺𝐺1,𝐸𝐸𝐺𝐺)
is an 𝛼𝛼-expander if, ∀𝑖𝑖 ∈ 0,1
and ∀𝑆𝑆 ⊆ 𝑉𝑉𝐺𝐺𝑖𝑖 with 𝑆𝑆 ≤ |𝑉𝑉𝐺𝐺𝑖𝑖 |/2, 
we have that 𝜕𝜕𝑆𝑆 ≥ 𝛼𝛼|𝑆𝑆|, 
where 𝜕𝜕𝑆𝑆 denotes the set of 
vertices connected to 𝑆𝑆.  

• Random model [2] 
connects every pair of 
vertices with an edge 
independently with 
probability 2d/n.

• X-Net [1] chooses a 
random n-vertex d-left-
regular (i.e., every left 
vertex has degree d) 
graph uniformly at random 
from the set of all such 
graphs.

• Rreg (ours) chooses a 
random n-vertex d-regular 
graph uniformly at random 
from the set of all such 
graphs.

CIFAR100
𝑑𝑑 = 3
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