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Problem Setup
Deep convolutional neural networks for semantic segmentation 
do not generalize well to distributions slightly different from the 
one of the training data and they require a huge amount of 
labelled data for their optimization. We introduce feature-level 
space-shaping regularization strategies to reduce the domain 
discrepancy in such scenario. Jointly enforcing a clustering 
objective, a perpendicularity constraint and a norm alignment
goal on the feature vectors corresponding to source and target 
samples. We verify the effectiveness of our methods in the 
autonomous driving setting achieving state-of-the-art results
in multiple synthetic-to-real road scenes benchmarks.

Results
Our end-to-end strategy, despite its simplicity, achieves state-of-
the-art results in the common synthetic-to-real autonomous 
driving benchmark GTAV-to-CityScapes.
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Architecture
The key insight of our strategy is the use of multiple space-shaping strategies
to enhance the semantic content of the latent space. 

To further reduce estimation errors in the computation of class-discriminative 
losses we exploit exponentially smoothed prototypes.

Space-Shaping Objectives
1) Class Clustering: Align source and target feature vectors

2) Prototype Perpendicularity: Different classes should have different activations

3) Norm Alignment: Target samples have smaller feature norms than source ones

4) Entropy Minimization: Mimic source samples confidence of network in target ones
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Strategy mIoU

Baseline 36.9
ASN (feats) 39.0
SAPNet 43.2
MaxSquareIW 45.5
LSR (Ours) 46.0
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A. T-SNE plot of normalized feature vectors.
B. Star plot: Norm and intra-class angle. More details in section 6.5 of the article.
C. Bar Plot: inter-prototype angles.
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Feature-Level Labels
To employ class-discriminative objectives on the feature vectors one 
needs to downsample the labels in a semantically-aware manner.

Idea: Use SIFT-like histogram filtering, keep only relevant classes.
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