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Abstract
Deep networks forget old tasks when learning new ones. We focus on class

incremental continual learning (CL) in semantic segmentation. The proposed

CL scheme shapes the latent space to reduce forgetting whilst improving the

recognition of novel classes. Our method is driven by 3 novel components:

1) Prototype matching enforces latent space consistency, constraining the

encoder to produce similar representations for old classes;

2) Features sparsity makes room in the latent space for new classes;

3) Contrastive learning clusters features according to their semantics while

tearing apart those of different classes.

Continual Segmentation
Our Focus: Class-Incremental Continual Learning in Semantic Segmentation

Many setups emerged to deal with the background shift and annotation of 

previous classes in future steps.

Our Approach (SDR)
SDR: Sparse and Disentangled Representations

We combine task-related cross entropy loss with 4 constraints:

Prototype matching:

Contrastive Learning:

Features Sparsity:
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Conclusion
 We propose 3 novel latent space shaping techniques to avoid forgetting

and promote learning of new concepts: prototype matching, contrastive 

learning and sparsity

 We jointly tackle sequential, disjoint and overlapped scenarios

 We achieve state-of-the-art results on a variety of tasks and datasets
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 On-batch prototypes constrained to be close to representations learned 

from previous steps
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Features of the same class tightly clustered around prototype
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Features of different classes separated from each other
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features normalized with respect to the 
class-conditional maximum value

Set of active channels is narrowed, letting room for the representation

of upcoming classes
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Paper website: https://lttm.dei.unipd.it/paper_data/SDR/

Code available: https://github.com/LTTM/SDR
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