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Abstract Proposed Approach

The semantic understanding of ur-

ban scenes is one of the key com- = == — synthetic path
ponents for autonomous driving sys- - reslpam
tems. Deep neural networks require
huge amount of labeled data, which is : 5
difficult and expensive to acquire. A : | Generator | SN Fully -l
recent workaround is to exploit syn- | (segmentation | | . | Convolutional |

thetic data but differences between Bmns e | Network) | | ey | Discriminator
real and synthetic scenes limit the R : :
performance. We propose an unsu- | | AN Y
pervised domain adaptation strategy
from a synthetic supervised training to
real data.

Experimental results demonstrate that
the proposed approach is able to
adapt a network trained on synthetic Adversarial Trz Self_Taug ht Lo:¢

datasets to a real one.
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