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Abstract Proposed Approach

Deep learning architectures exhibit a critical drop of performance due to catastrophic for-

getting when they are required to incrementally learn new tasks. Contemporary incre- Mj_4
mental frameworks focus on object classification or detection while in this work we for-
mally introduce the incremental learning problem for semantic segmentation in which a
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pixel-wise labeling is considered. To tackle this task we propose to freeze part of the net- > : > >
work and to distill the knowledge from output logits or from intermediate features of the w Mé .....
previous model to retain the information about previously learned classes, whilst updat- !
ing the current model to learn new ones. In opposition to recent methods, we do not store 4\ 1/ [
any image from previous training steps and only the last model is needed for adaptation. M v D | D
Qe experimental evaluation on VOC2012 shows the validity of the proposed methods. & \ / |
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