UNSUPERVISED DOMAIN ADAPTATION FOR URBAN SCENES SEGMENTATION Biasetton M., Michieli U., Agresti G., Zanuttigh P. - University of Padova

{biasetto, michieli, agrestig, zanuttigh}@dei.unipd.it

Abstract

The semantic understanding of urban scenes is one of the key components for an autonomous driving system. Deep neural networks require to be trained with a huge amount of labeled data, which is difficult and expensive to acquire. A recently proposed workaround is the usage of synthetic data, however the differences between real world and synthetic scenes limit the performance. We propose an unsupervised domain adaptation strategy from a synthetic supervised training to real data exploiting three components: supervised learning on synthetic data, adversarial learning strategy and finally self-teaching strategy working on unlabeled data. Experimental results prove that the proposed approach is able to adapt a network trained on synthetic dataset to a real one.

Cross-Entropy Loss

$$\mathcal{L}_{G,1} = -\sum_{c \in \mathcal{C}} \mathbf{Y}_n^s[c] \cdot \log \left(G(\mathbf{X}_n^s)[c] \right)$$

s: source dataset

t: target dataset

antitative Results																				
		ľ	50																	
		val	ing				Ŧ			IJ		U						G		
	pt	lew	ild	11	lce	le	gh		bD	rai	$\mathbf{\Sigma}$	rsc	ler	۲.	lck	\mathbf{v}	in	yik	é	O C
rom GTA															truck			mbike		
s ($\mathcal{L}_{G,1}$ only)	45.3	20.6	50.1	9.3	12.7	7 19.5	5 4.3	0.7	81.9	21.1	63.3	3 52.0) 1.7	77.9	26.0	39.8	0.1	4.7	0.0	27.9
rs (\mathcal{L}_{full}) [1]	54.9	23.8	50.9	16.2	11.2	2 20.0) 3.2	0.0	79.7	31.6	64.9	9 52.5	5 7.9	79.5	27.2	41.8	0.5	10.7	7 1.3	30.4
ing et al. [2]	81.7	0.3	68.4	4.5	2.7	8.5	0.6	0.0	82.7	21.5	67.9	9 40.0) 3.3	80.7	34.2	45.9	0.2	8.7	0.0	29.0
																				1
		F	alk	50									_							
			Ma	ldi	—	G	(1)	ht	μ	N			SOT	Ţ			,	lke	(1)	Ŋ
	Dac	-	Ide	lin	vall	ence	ole	lig	sign	eg by	\mathbf{D}	ky	ere	ide	ar	us	1	lidu	ike	mloU
m SYNTHIA	L		S	D	5	fe	Q	÷	Ţ			ົທ	Q	Ľ.	Ü	<u>р</u>		IJ	q	IJ
rs ($\mathcal{L}_{G,1}$ only)	10.3	3 20	0.5 3	35.5	1.5	0.0	28.9	0.0	1.2	2 83	.1 7	74.8	53.5	7.5	65.8	18.	1 4	l.7	1.0	25.4
$\operatorname{trs}\left(\mathcal{L}_{full}\right)[1]$	78.4	4 0).1 7	73.2	0.0	0.0	16.9	0.0	0.2	2 84	.3 7	78.8	46.0	0.3	74.9	30.	8 (0.0	0.1	30.2
ung et al. [2]	72.	5 0	0.0 6	63.8	0.0	0.0	16.3	0.0	0.5	5 84	.7 7	76.9	45.3	1.5	77.6	31.	3 (0.0	0.1	29.4
setton M., Michieli	ΙΙ Δσ	rresti (7 Zan	uttioh	р "П₁	ISIINAT	vised I	Doma	in Ada	ntatio	n for	Seman	tic Sea	mentat	tion of	Irhan	Scen	ວເ"		
Workshop on Auto	U	•		0		Buper	VIJCU I	- 01110.	ui / 100				ue deg			Cidall				
ng W., Tsai Y., Liou	Y., Lin	. Ү. <i>,</i> Үа	ing M.,	, "Adve	ersaria	l Learr	ing fo	r Sem	i-Supe	rvised	Sema	ntic Se	egment	ation",	BMVC	2, 2018.				

UNIVERSITÀ DEGLI STUDI DI PADOVA

threshold on confidence maps from D