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Abstract

[he semantic understanding of urban scenes is
one of the key components for an autonomous
driving system. Deep neural networks require to
be trained with a huge amount of labeled data,
which is difficult and expensive to acquire. A re-
cently proposed workaround is the usage of syn-
thetic data, however the differences between real
world and synthetic scenes limit the performance.
We propose an unsupervised domain adaptation
strategy from a synthetic supervised training to
real data exploiting three components: supervised
learning on synthetic data, adversarial learning
strategy and finally self-teaching strategy working
on unlabeled data. Experimental results prove that

the proposed approach is able to adapt a network \_ N \_ J
trained on synthetic dataset to a real one. > L 3«
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Quantitative Results
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