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I. INTRODUCTION AND RELATED WORKS

The main interest in analysis of tennis networks is directed
towards the implementation of new ranking techniques in-
stead of the ATP ranking system, together with their relative
predictive power when a new match is played. There are
no contributions in literature, instead, for what concerns link
prediction (e. g. who are the most probable players to play
against given that they did not played against before?) and
community detection.
Radicchi in [1] is the first who applied the PageRank (PR)
algorithm to tennis network thus identifying Jimmy Connors
as the most valuable player in the tennis history. Dingle et al.
in [2] applied the previous work to ATP and WTA (Women’s
Tennis Association) matches and they also provided a simple
comparison on the basis of predictive power. In [3] the authors
proposed yet another ranking method applying PageRank to
the subgraph of the Top-100 players. In [4] many ranking
methods, both through network and Markov chains analysis,
have been proposed and verified by means of prediction power.

Also few other non-network-related approaches have been
proposed so far: for example in [5] statistical models have
been tested to improve the current ranking system, or in [6]
the authors applied a novel method exploiting neural networks
based on 22 features and achieving a 75% benefit in prediction
through those techniques.

In this paper we are going to apply some algorithms aiming
at confirming the present literature on ranking methods, thus
seeing how active tennis players have improved their overall
prestige over the recent years. However, at the same time,
we aim at providing some useful considerations about link
prediction and communities detection.

II. RESULTS AND DISCUSSION

This section sometimes assumes that the reader has a
broad knowledge about tennis matches dynamics and points
assignment; if it is not the case please refer to the first
Homework.

A. Ranking Methods and Predictive Power

1) Preliminaries on Ranking Algorithms: The analysis
shown in this section assumes the direct representation of the
network where the loser player has an edge to the winner
player and the weight corresponds to the number of matches
won by the winner.

The link analysis methods we are going to investigate are:
Hubs and Authorities (HITS algorithm, Hyperlink-Induced
Topic Search discussed in [7]), simple PageRank and PageR-
ank with teleportation (see [8] and [9] as references).

The idea on which HITS algorithm is based regards the
definitions of hubs and authorities. Authorities are nodes with
a high number of edges pointing to them, hubs are nodes
which link to many authorities; in our scenario, intuitively,
we expect that authorities are often associated with the most
successful players (because they won against a wide gamma
of players), while the hubs with mediocre players with a long
career. More formally we can compute the authority-scores a
and the hub-scores h respectively as:

a =
Ah

||Ah||
h =

ATa

||ATa||
where we assumed the adjacency matrix to be the transposed
version of the one presented in Homework 1 (i.e. here an entry
aij = 1 means that there is a link from node j to node i).
Notice that ai ≥ 0 and hi ≥ 0 ∀i. The problem can be solved
through power iteration with convergence parameter ε.

The rationale behind PageRank is that of a random walk
along the graph and the prestige score p for each player
is determined as the probability of being at that node in
stationarity conditions. The t-th update of p goes as:

pt = Mpt−1

where M is the column stochastic adjacency matrix.
The simple PageRank algorithm is affected by some un-

desirable problems. For example it would end up in dead
ends, although it is not the case because who win one match
will surely lose one other (unless the player plays only
tournaments winning all of them, which never happens); and
there also might be periodic behavior looping in cycles, which
is somehow reasonable to expect since we are considering
very different tennis epochs. Thus we can add to the model
the possibility of not to follow the behavior but to jump to
a random node in the network with a probability α ∈ (0, 1).
Hence the t-th update step of p becomes:

pt = M̆pt−1 = (1− α)q11Tpt−1 + αMpt−1

where q1 is the stochastic teleportation vector and we assumed
it to be q1 = 1

N 1 (equal probabilities), with 1 column vector
of N ones; α is a damping factor typically set to 0.85 (this
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Figure 1. Hubs and authorities scores of HITS algorithm.

is due to historical reasons as proposed in the original paper
[9] and for the sake of comparisons with other works). This
considerations led us to a much simpler iteration procedure
than the one proposed in [1] and [2], although they are
equivalent. The simplifications are made possible thanks to
the observation regarding the absence of sinks-like nodes and
to a compact vectorial expression.

2) Discussion of results: Hubs and authorities scores are
reported in Figure 1, where we can see that nodes ID corre-
sponding to players who only have lost matches (the last ones)
have zero authority score, because there are no links pointing
to them, but possibly non-zero hub score.
The names of the Top-20 hubs and authorities are reported in
the second and third columns of Table I for ε = 10−8; few
changes happen varying this parameter and most of them not in
the very first positions. Though there are no reference literature
of HITS applied to tennis, nevertheless from the table we
can confirm our previous intuition and also realize that those
concepts are somehow similar to what we already discussed
in the first homework talking about in-degree and out-degree
hubs. Indeed, we can recognize that in-degree hubs and out-
degree hubs are placed in the first positions respectively of
authorities and of hubs, although not in the precise order. In
the first homework we found as the five highest in-degree hubs
(≈ authorities): Jimmy Connors, Roger Federer, Ivan Lendl,
Guillermo Vilas and John McEnroe. While the five highest
out-degree hubs (≈ hubs) were: Fabrice Santoro, Feliciano
Lopez, Mikhail Youzhny, Guillermo Vilas and John McEnroe.

In terms of complexity we expect at most tmax iterations
for the HITS algorithm to converge, where:

tmax =

⌈
− ln(ε)− ln(

√
N)

2 ln(d1/d2)

⌉
with d1 and d2 being the eigenvalues associated with the two
highest eigenvectors of M = AAT. Setting ε = 10−8 we find

tmax = 180 iterations, but in order to converge just t = 100
iterations are needed. In Table II is reported the computational
time for the convergence of this algorithm.

Finally the predictive power of HITS based on authorities,
defined as the percentage of times the higher ranked player
will win, is reported in Table III for two different new
dataset: first we considered the new matches played between
September 2017 and November 2017 extremal included, which
also concluded the 2017 tennis season, for a total number
of 431 matches (those are independent data since are not
considered in the training dataset); then we considered all the
matches played in 2017 for a total number of 2633 matches.
As Modified ATP we mean that the player who has obtained
more ATP points in his career will win. As regards the
smaller dataset, HITS behave well and similar to the Modified
ATP system, while for the largest dataset the performances
deteriorate.

The players prestige scores obtained through PageRank
algorithms are plotted in Figure 3, where, similarly as before,
we can see that the players who only lose matches have the
same minimum value.
The Top-20 tennis players identified by those algorithm are
reported in fourth and fifth columns of Table I. Without
teleportation the podium remains the same as in the authorities
of HITS algorithm, then there are many differences. With
teleportation we are able to break the loops leading to the
biggest authorities and achieve a fairer result.
Moreover those results are quite robust and they do not vary
much by setting another value to α.
The fifth column of this table should confirm the goodness of
our model being the results very similar to the ones reported
in [1]. Actually this table can update the one shown in
the mentioned paper where were used data up to 2010 and
the resulting top-players were: Jimmy Connors, Ivan Lendl,
John McEnroe, Guillermo Vilas, Andre Agassi, Stefan Edberg,
Roger Federer, Pete Sampras, Ilie Nastase, Bjorn Borg, Boris
Becker, Arthur Ashe, Brian Gottfried, Stan Smith, Manuel
Orantes, Michael Chang, Roscoe Tanner, Eddie Dibbs, Harold
Solomon and Tom Okker. Comparing those results with the
fifth column of Table I we can appreciate how the players
who are still in activity (Roger Federer, Rafael Nadal, Novak
Djokovic, Andy Murray and David Ferrer) have gained some
positions in the overall ranking. It should be stressed that those
results are inherently biased toward already retired players,
since still active players did not played all the matches of
their career; this bias, however, could be removed, for example
considering only matches played the same year, as done in
[1]. For example, last year (2017) ranking comparisons are
reported in the last three columns of Table I where we see
that authorities and PageRank involve mostly the same players
in slightly different orders, also with respect to the Official
method.

Moreover, in Figure 2 probability distributions of pres-
tige scores obtained through the proposed algorithms
are shown. Notice that both

∑N
i=1 prestigei = 1 and∑N

i=1 P[prestigei] = 1, but in this plot the prestige values are



Rank Authorities Hubs Simple
PR

PR with
Teleport.

Authorities
2017

PR with
Teleport. 2017

Official ATP
2017

1 Roger Federer David Ferrer Roger Federer Jimmy Connors Rafael Nadal Roger Federer Rafael Nadal
2 Rafael Nadal Tomas Berdych Rafael Nadal Ivan Lendl Roger Federer Rafael Nadal Roger Federer
3 Novak Djokovic Feliciano Lopez Novak Djokovic Roger Federer Alexander Zverev Alexander Zverev Grigor Dimitrov

4 Andre Agassi Mikhail Youzhny Ivan Lendl John McEnroe Grigor Dimitrov David Goffin Alexander Zverev

5 David Ferrer Fernando Verdasco Andre Agassi Rafael Nadal David Goffin Grigor Dimitrov Dominic Thiem

6 Andy Murray Fabrice Santoro Pete Sampras Novak Djokovic Dominic Thiem J. M. Del Potro Marin Cilic

7 Jimmy Connors Tommy Haas Andy Murray Guillermo Vilas Marin Cilic Dominic Thiem David Goffin

8 Ivan Lendl Jarkko Nieminen Jimmy Connors Ilie Nastase Jack Sock Jack Sock Jack Sock

9 Pete Sampras Tommy Robredo David Ferrer Andre Agassi Roberto B. Agut Nick Kyrgios Stan Wawrinka

10 Andy Roddick Philipp Kohlschreiber Stefan Edberg Bjorn Borg J. M. Del Potro Marin Cilic Pablo C. Busta

11 Lleyton Hewitt Andreas Seppi Boris Becker Stefan Edberg Pablo C. Busta Sam Querrey J. M. Del Potro

12 Tomas Berdych Stanislas Wawrinka Andy Roddick Pete Sampras Diego Schwartzman Roberto B. Agut Novak Djokovic
13 Carlos Moya Richard Gasquet John McEnroe Arthur Ashe Lucas Pouille Jo-Wilfried Tsonga Sam Querrey

14 John McEnroe Nikolaj Davydenko Lleyton Hewitt Boris Becker Tomas Berdych Giles Muller Kevin Anderson

15 Tommy Haas Roger Federer Tomas Berdych Stan Smith Jo-Wilfried Tsonga Novak Djokovic Jo-Wilfried Tsonga

16 Stefan Edberg Radek Stepanek Michael Chang Brian Gottfried Novak Djokovic Tomas Berdych Andy Murray
17 Yevgeny Kafelnikov Jonas Bjorkman Yevgeny Kafelnikov Manuel Orantes Milos Raonic Milos Raonic John Isner

18 Boris Becker Carlos Moya Goran Ivanisevic Andy Murray Philipp Kohlschreiber Kevin Anderson Lucas Pouille

19 Nikolaj Davydenko Andy Murray Carlos Moya David Ferrer Kevin Anderson Damir Dzumhur Tomas Berdych

20 Tommy Robredo Ivan Ljubicic Tommy Haas Roscoe Tanner John Isner Alberto R. Vinolas Roberto B. Agut

Table I
RANKING METHODS OUTCOMES; THE BOLD NAMES ARE PLAYERS WHO HAVE BEEN AT THE FIRST ATP POSITION DURING THEIR CAREER. PLAYERS

LIKE Manuel Orantes, Guillermo Vilas AND David Ferrer ARE OFTEN REFERRED TO AS ETERNAL SECOND BEST AND IN THE COLLECTIVE IMAGINATION
THEY DESERVED TO BE NUMBER ONE OF THE RANKING. UNDERLINED NAMES IN THE LAST COLUMNS ARE THE ONES RANKED IN THE SAME POSITION

AS IN OFFICIAL ATP RANKING.

Algorithm # of Iterations Time [ms]
HITS 120 56

Simple PageRank 185 180

PageRank with Teleportation 53 164

Table II
NUMBER OF ITERATIONS AND TIME FOR CONVERGENCE OF THE

PROPOSED RANKING ALGORITHMS WITH ε = 10−8 .

reported in a common scale in order to compare the behaviors.
We can see that all the discussed ranking methods be-

have in a similar way: they have a lot of occurrences of
small prestige nodes and a decreasing number of even more
prestigious players, where the concept of prestige is defined
by the specific algorithm. However the probability of highly
prestigious players is not negligible since the behaviors follow
heavy-tailed distributions.

The computational demand of the proposed algorithms
using ε = 10−8 is reported in Table II and we ascertain that
there is no need of speeding-up techniques for our purpose
since N is not too large.

The predictive power of those algorithms is shown in Table
III. In our analysis PageRank and Modified ATP ranking
behave similarly and larger test sets are needed to investigate
better the results. As order of magnitude the obtained results
are consistent with the ones shown in [2] but we achieved
a more robust ATP estimator by considering all the points
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Figure 2. Scaled version of prestige scores distributions for the proposed
algorithms in log-log plot.

gained by a player (we called it Modified ATP) and not the
ATP ranking at the exact time of the match, which is done by
the Official ATP estimator, but it has already been proven to
achieve worst estimates than e.g. PageRank [2].

Finally, in Figure 4 is shown a comparison of the complexity
of the proposed algorithms by varying the convergence param-



New Data: from 01/09/17 to 30/11/17 New Data: all 2017
# of Matches 431 2633

Modified
ATP

Authorities
HITS

Simple
PR

PR with
teleportation

Modified
ATP

Authorities
HITS

Simple
PR

PR with
teleportation

Right prediction % 59.53% 59.53% 60.70% 58.84% 60.92% 60.08% 60.46% 60.27%

Table III
PREDICTIVE POWER OF THE PROPOSED RANKING ALGORITHMS ON TWO DIFFERENT TEST SETS.
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Figure 3. Prestige scores of PageRank algorithms.
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Figure 4. Number of iterations and amounts of time needed in order to run
the proposed algorithms.

eter ε, both in terms of number of iterations and elapsed time.
We can appreciate that even though the number of iterations
needed by PageRank with teleportation is smaller than the
others, the update step is more complex thus resulting in a
computational time similar to the simple PageRank. Also,
HITS algorithm performs worst than the others in terms of
time needed and we can notice that the theoretical bound on
its number of iterations is quite strict for small values of ε.

B. Link Prediction

In this section we are going to briefly investigate the players
who are likely to play against in future, given that they have
never played against before. This is actually a problem of
link prediction and we can also consider the undirect and
unweighted network’s representation because we are looking
for predictions at link level, not at the specific outcome of
the match. The idea is that similar nodes are likely to build a
link between them. As similarity metric we used the idea of
Common Neighbors (CN) defined as: SCN (i, j) = |Ni ∩ Nj |
where Nx is the set of neighbors of node x. Actually, for
undirect networks a simple expression holds: SCN = A2.
Moreover we need to restrict our attention to active players,
thus they could effectively play a match in future.

Applying all those considerations above we found that the
six most likely matches to be drawn are: Victor Troicki - Ivo
Karlovic, Rafael Nadal - Yen Hsun Lu, Teymuraz Gabashvili -
Gael Monfils, Marin Cilic - Dmitry Tursunov, Nicolas Mahut
- Marcos Baghdatis and Fabio Fognini - Nicolas Mahut.

The complete list is saved in the variable named names_CN
of the attached file tennis_wins.m.

The complete task as presented takes about 6 seconds for
the entire network. Many improvements could be brought by
e.g. restricting the search to active players only.

C. Communities Detection

We now want to partition the graph in k disjoint groups,
communities, through spectral clustering technique defined
in [10]. A community is a group of nodes that have a
higher likelihood of connecting to each other than to nodes
from other communities. Intuitively, one should expect that k
communities will appear, each containing players of the same
era; but we may be interested in how to find the best partition
such that minimizes the connections among the k groups.

For simplicity let’s consider the case of k = 2, any
other choice is a straightforward extension. We consider the
normalized Laplacian matrix L̆ = I−D− 1

2 AD− 1
2 , where

D = diag(d) and d = A1. The normalization makes the
Laplacian matrix more stable in the sense that the produced
eigenvectors are less noisy. Then we find the second largest
eigenvalue λN−1 and its eigenvector vN−1 respectively called
algebraic connectivity and Fiedler vector from [11]: hence in
order to find the two communities we can simply look at the
sign of the Fiedler vector and assign indices corresponding to
positive values to one community and vice versa.

Figure 5 reports the Fiedler vectors vN−1 and all the
eigenvalues λi for both the direct and undirect representations.



First of all we can confirm that λN = 0 and λ1 < 2 as we
expect from the theory. Then we can notice that only two or
three eigenvalues can be considered small and the eigengap
between them is still quite large; hence a partitioning in two or
three communities is a posteriori sensible. Moreover defining
a conductance measure hG = minA

cut(A,AC)
min(assoc(A),assoc(AC))

,
the Cheegar’s inequality 1

2λN−1 ≤ hG ≤
√

2λN−1 helps in
measuring the quality of spectral clustering: more specifically
a low value of hG means that the partitioning is good. We
found 0.0321 ≤ hg ≤ 0.3585 where the upper bound is not
very small, thus the partition will not be very accurate, because
we need to divide the careers of many peer players, thus many
links will exist between the communities.

From the sign of the Fiedler vector we can see that the
previous intuition was correct and we can identify 1988 as the
year of transition (i.e. around player ID 1400). That year is not
at all the half of the considered period, which goes from 1968
to 2017; it indicates, instead, the year of a seminal moment
in ATP history, because in 1988 ”The Parking Lot Press
Conference” [12] took place, which states the beginning of
the ATP Tour era. From there onward tennis match schedules
are similar to what we are used to nowadays while before the
tennis circuit was very different.

This analysis also bring to light few mistakes (about 10) due
to homonymy in the dataset: we can observe this by looking
at the Fiedler vector where some players of the first years
considered (IDs from 0 to 1200) are identified as belonging
to the community of more recent players. Those inaccuracies,
however, do not heavily influence the previous results since
the players involved are not very significant.

In Figure 6 is shown the plot of the two partitions. In par-
ticular we can see in the center of this plot the aforementioned
errors: the most evident is the case of player ID 682. We can
confirm that the partitions will never be very accurate since
many connections (i.e. matches played) exist across them.
Notice also that the algorithm does not classify accurately the
players who only have lost matches (players with high ID
numbers) since there is too much noise; a better classification
could be achieved by simply categorize them as belonging to
the community of the players who beat them.
However, even though the quality as communities is not very
good, still the partitions found are satisfactory and reflect our
starting idea.

III. CONCLUSIONS AND FUTURE WORK

In this paper we have performed a joint analysis of few dif-
ferent ranking techniques and we have evaluated them showing
analogies and differences, also comparing and extending the
results already present in literature. We have shown that Jimmy
Connors is still the best player in tennis history up to 2017
according to the PageRank with teleportation algorithm, but
actually Roger Federer is approaching the top position, indeed
it is at about the same value of Ivan Lendl.

An interesting aspect of the proposed ranking systems is that
they do not require any arbitrary introduction of external crite-
ria for the evaluation of the quality of players and tournaments.
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Figure 6. 2D network visualization identifying two communities. First
partition in green, second in red.

Players’ prestige is in fact self-determined by the network
structure. The proposals achieve also similar predictive power
to the modified ATP ranking and defeat the official one.

Those considerations on predictive power should be rein-
forced in the near future by choosing an enlarged test set. In
future, for example, we would like to include in the statistic
some matches played in 2018, in order to have independent
data, and also include and evaluate other modifications to
PageRank algorithm.

Moreover we have briefly discussed about an easy method
of links prediction exploiting common neighbors as similarity
metric. Many other metrics can be taken into account, e.g.
Adamic-Adar or resource allocation and so on; the results can
be compared but we do not expect large variations hence it is
not worth to present them here.

Then we have seen an interesting and powerful application
of spectral clustering for graph partitioning and we have
recognized a promising result. We can further investigate how
the partitions will change by increasing the number of cluster
or by using a different communities detection algorithm.
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