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I. INTRODUCTION AND RELATED WORKS

During the last decades Network Science field has been
rediscovered and addressed as the "new science" [1], [2]. A lot
of issues have been (re-)examined thanks to Network Science
techniques, which are nowadays permeating the way we face
the world as a unique interconnected component. The presence
and the immediate availability of a huge amount of digital data
describing every kind of network and the way in which its
nodes interact, has made possible an interdisciplinary analysis
of many large-scale systems.
Similar techniques have been recently applied also to pro-
fessional sports, in order to discover complex interactions
phenomena and universal rules which are almost invisible
and difficult to recognize restricting the attention to small
networks or to microscopic level. For example, complex-
network analysis were conducted on soccer (e.g. in [3] and
[4]), football ([5] and [6]), basket ([7] and [8]), baseball ([9])
and cricket ([10] and [11]), just to name a few.

In professional tennis as well, there are few studies ex-
amining how to map the matches into complex networks
and then developing new ranking methods alternative to the
ATP (Association of Tennis Professionals) official one (more
on those methods will be likely discussed in the second
homework).
The first work of this kind is represented by [12], where
the authors explained the network generation and then they
performed some simple analysis on single Grand Slams
tournaments matches only (i.e. four tournaments each year:
respectively Australian Open, Roland Garros, Wimbledon and
U.S. Open). Then an important contribution was brought by
[13], where a different network modeling is proposed and the
PageRank algorithm is applied identifying Jimmy Connors as
the most important single tennis player between 1968 and
2010.
More recent tennis-related complex network studies regard
new ranking methods proposal and evaluations (see as ref-
erence [14], [15] and [16]), or are related to doubles matches
[17] or to the gender and handedness effects in top ranking
positions [18].

On the other side, however, in literature there is not an
exhaustive and precise explanation about the network topology
of the tennis matches graph. Moreover, some papers seems
to be hasty in asserting a scale-free nature of the network
with some inaccuracies. In this study we want to carefully
analyze the resulting network structure when all the official

single tennis matches are considered since the so-called "Open
Era" to the end of August 2017 (i.e. from 1968 onward;
the ATP organization, instead, was founded in 1972) and to
state all its major properties which can be exploited for some
interesting structural considerations, even not touched in the
existing studies, and for further analysis. We also performed
many computer simulations using Matlab.

II. GENERATION OF DATASET AND NETWORK

We begin our discussion with the generation of the dataset:
all men’s tennis matches since 1968 are considered but the
Davis Cup ones since they imply a completely different system
for points’ attribution and do not affect the total size of the
network because they represent a minor contribution to the
total number of matches. The data can be freely downloaded
directly from the ATP website [19] and from other online
repositories (like [20] for recent data and [21]) allowing to
fix some inconsistencies in the official ones. Hence the first
step to do is to merge the small datasets, provided on a yearly
basis, in one only; this is a very delicate operation since
we need to account for many format differences and bring
them all back to a common language for the information’s
specification. Some preliminaries have been manually done
using Microsoft Excel and subsequently through two Matlab
scripts (prepare_old_files.m and the first parts of
read_tennis_files.m). For the next considerations we
decided to keep the following features of interest for each
match: the tournament level, the tournament stage, the winner
player and the loser player.
A brief excursion follows in order to explain those quantities.
The tournament levels allows to identify the importance of a
match, in fact ATP hosts tournaments of very different prizes
(as regards both money and ATP ranking points assigned),
which in increasing order of importance are: ATP 250 tourna-
ments, ATP 500, Masters 1000, the annual ATP World Tour
Finals and the Grand Slams (different names were used in the
past but similar considerations hold). The ATP points assigned
to the winner of the tournament are respectively 250, 500,
1000, 1500 and 2000 and lower points are attributed to the
players in proportion to the reached stage of the tournament
(e.g round 128, round 64, up to semifinal and final); refer to
Table II for a simplified overview of current points attribution
distribution where points of qualified players are taken into
account as last rounds of each entry.

With those considerations in mind it is possible to map
the matches into many different network representations (in



W F SF QF R16 R32 R64 R128
Grand Slam 2000 1200 720 360 180 90 45 10
ATP World Tour Finals +500 +400 +200 points for each round robin match win
Masters 1000 1000 600 360 180 90 45 25 15
ATP 500 500 300 180 90 45 20 10
ATP 250 250 150 90 45 20 10 5

Table I
ATP POINTS DISTRIBUTION. W=WINNER, F=FINALIST, SF=SEMI FINALIST, QF=QUARTER FINALIST, R=ROUND.

all of them, however, the nodes represent the players, hence
they are homogeneous) and we are going to analyze three
main scenarios which are summarized in Figure 1 matching
the following descriptions:

1) Direct graph representation: in this model an edge
exists from every loser to the winner, each link has
a weight equal to the number of times the destination
node won over the starting node. In case of multiple
links the weights are just summed. Similar represen-
tations were adopted in [13] considering data up to
2010, in [12] considering data between 90s and 00s
of male and female matches of Grand Slams only
with different weights function, and in [14] with data
of top-100 players only and different weights func-
tion. The obtained graph is not symmetric, not even
if the respective unweighted version is considered.
This representation is implemented in the Matlab script
read_tennis_files_wins.m, which returns the
adjacency matrix of this kind of network, and it is
analyzed in the main script tennis_wins.m.

2) Direct and symmetric graph representation: this
original proposal assumes the existence of a directed
link from each couple of nodes which played at least one
match against each other. The weights are the respective
ATP points awarded by the two players; note that even
the loosing player gets a non-negative points score.
Also in this representation in case of multiple links the
points are summed up. By construction, the network
will be structurally symmetric but with possibly very
different weights. This representation is implemented in
the Matlab script read_tennis_files.m and it is
analyzed in the main script tennis.m.

3) Undirect (and unweighted) graph representation: for
some considerations it is useful to view the undirect and
possibly unweighted version of the two representations
just presented (which are naturally identical). Two play-
ers are connected through an undirected and unweighted
edge if they play at least one match against each other,
thus we obtain an undirected and symmetrical network.
This representation is implemented on the fly in the
script tennis.m.

The dataset is the largest possible since official tennis
matches has been established and comprises of N = 4245
nodes (i.e. players) and a total of 151734 matches which leads
to L = 170168 or 101436 links depending on the selected
representation (larger number for the second representation).
Notice that, as in many real networks, the matrix can still be

1. 

w 

Loser Winner 

w=# of times P1 wins agains P2 

2. 
w, 

W2 

Loser Winner 

w1=sum of the ATP points awarded by P1

in matches against P2 

w2=sum of the ATP points awarded by P2 

in matches against P1 
3. 

1 

Loser Winner 

Figure 1. Three different network representations considered; each edge is
associated to a respective weight briefly explained.

defined as sparse since it holds L � Lmax =
N(N − 1)

2
=

9007890 links, where Lmax is the maximum number of links
of a network with N nodes.
This large dataset will allow us to spot general trends and
most competitive players overall; for more specific analysis it
is enough just to restrict the attention to a smaller period of
time (e.g. if we are interested in a specific player we should
consider restricting our focus to his career epoch). Hence
some results can be inherently biased toward the already
retired players but in practice we will see that this does not
always hold because of, for example, the increasing number
of tournaments and of ATP points assigned each year.

III. RESULTS AND DISCUSSION

In this section we are going to explore the results of com-
plex network techniques highlighting the properties and the
underlying physical meaning. Moreover we will assert some
comparisons among the different network representations to
verify the common aspects through different views.



0 500 1000 1500 2000 2500 3000 3500 4000

nodes ID

0

500

1000

1500

2000

2500

3000

3500

4000

n
o

d
e

s
 I

D
Adjacency Matrix

Figure 2. Adjacency matrix of the direct network representation.

A. Adjacency Matrix

In Figure 2 the adjacency matrix of the first representation
of direct network is shown. The matrices in the other two
scenarios can be simple found making the matrix symmetrical.
The plot of the matrix has this shape because, by construction,
in read_tennis_file.m first of all we have read the
players which have won at least one match and after that we
have considered the payers which figure only for lost matches.
Thus, since there can’t be any link between two always-loser
players, the bottom-right part of the matrix is composed by
all-zero entries. The bottom-left part of the matrix (and the
respective up-right part if symmetric case is considered) do
have a few points which are the matches lost by players who
only have lost matches in the higher ATP tournaments (they
surely have won some matches in minor ATP tournaments like
Challengers or Futures in order for them to be admitted in the
main draw of the most important ATP tournaments).
Moreover notice that the columns and the rows with a lot of
non-zero entries are associated with players who have faced
a lot of different players, thus usually they are players with a
long-career and very successful, we should come back to this
idea of evaluation of successful player in section III-E and in
the second homework.

B. Network Visualization and Small World Property

In Figure 3 the visualization of the direct network is shown,
since the other two representations could be easily derived
starting from it.

By simply looking at the network topology we could
already imagine that a giant component is present and that
the small world property holds. By numerical evaluations,

Figure 3. Direct network visualization.

indeed, we found that in the direct representation there is
one giant component of size 2428 nodes and all the other
components are unitary (in the undirect network there is
just one component which contains all the nodes of the
network). Defining the shortest path between any two node as
the distance between those nodes we can derive the average

distance of the direct graph defined as 〈d〉 = 1

N

N∑
i=1

di with

di =
1

N

N∑
j=1

min(dij) which lead to 〈d〉 ≈ 3.48 hops (and

for the undirect network is 〈d〉 ≈ 3.34 hops). Moreover the
diameter of the network, i.e. the maximum of all the shortest
paths, is diam = max(min(dij)) = 10 hops (and diam = 8
hops for the undirect network).
Hence, the network exhibits actually a strong small world
property which leads to very short distances between any
chosen pair of nodes. In order to better visualize it we could
also look at the plots of the percentage of nodes within a
considered directed hop distance as in Figure 4 and we realize
that the worst cases are achieved only by a small fraction of
nodes, thus reducing the variance of this metric. Notice that
the blue curve for the first direct graph does not reach 100%
because some of the nodes are disconnected from the giant
component.

C. Degree Distributions

We are now interested in the evaluation of the degree
distributions of the nodes in the network. We propose the
distributions of in-degrees, of out-degrees and of total-degrees
of the direct network in Figure 5. The values of pin(k), pout(k)
and ptot(k) are the probabilities that a randomly picked node
have k incoming, outgoing or total links; i.e. the fraction of
nodes that have in-degree, out-degree or total-degree equal
to k. The distributions follow a similar behavior and we can
notice that are heavy-tailed, thus there are some hubs in the
network, i.e. outliers at high values, and we are going to
explore them in the next section.

The average in-degree and out-degree are 〈k〉 ≈ 23.89
edges, and the total average degree is then the double 〈k〉 ≈
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Figure 5. Direct network degree distributions for in, out and total links in
log-log scale.

47.78 edges. As already stated, the network is fully connected,
which makes sense being 〈k〉 such a high value.

The second moment for in-degree is 〈k2in〉 ≈ 3.31 · 103,
for out-degree is 〈k2out〉 ≈ 2.01 · 103 and for total-degree is
〈k2tot〉 ≈ 1.01 · 104.

D. Hubs

We have already pointed out that the considered graphs
present some hubs which are for interest in starting to deter-
mine the importance of a player in limitations to some specific
metrics.
Indeed, the strongest players, identified as hubs, tend to play
against a wide range of players: the weak ones, generally
at the first stages of the tournaments (the top-players, as
tournament’s seeds, are facilitated in the first rounds when
they are called to face qualified players, which are generally

Figure 6. Histogram of occurrences of in-degree nodes, in the x-label the
index of the players.

weak), and the strong ones at the last stages of the tournament,
which are rarely reached by the weak players.
From the three typologies of network representation we can
extract some useful information by simply looking at those
hubs.

First of all, in Figure 6 we can see the histogram of
occurrences of in-degree nodes in linear scale in order to be
aware that the five highest-degree nodes are well spread apart
from the majority of the other nodes which have much lower
degrees.
Thus if we look at the first five in-degree biggest hubs we
can determine the players who won more matches and the
respective number of winnings, those are: Jimmy Connors
(1219), Roger Federer (1076), Ivan Lendl (1047), Guillermo
Vilas (892) and John McEnroe (840). If we compare with the
ATP results archive we see slight variations, lower than 4%,
due to Davis Cup matches.

Analogous procedures apply to the players who have lost the
major number of matches: Fabrice Santoro (436), Feliciano
Lopez (387), Mikhail Youzhny (379), Guillermo Vilas (373)
and John McEnroe (351). Notice that here the numbers are
quite different from before, because only the players who also
win a lot of matches are guaranteed to play in the major
tournaments, otherwise after a while you loose the right to
play in.

Surely the results seen up to now tend to promote already
retired players and/or with a long career. On the other side,
if we think of applying similar techniques for the network
with ATP ranking weights, we see quite different outcomes
promoting current-time players because nowadays there are
great players, of course, but also more tournaments which give
even more ATP points than in the previous generations of
tennis players. Thus the five players who gained the most ATP
points are: Roger Federer, Rafa Nadal, Novak Djokovic, Jimmy
Connors and Ivan Lendl.

Looking at the degree distributions in Figure 5 and at the
results we are suggested to consider an underlying assumption:



the more connected athletes are and the most likely is to be
best players. Most of the players have a small number of
matches and then quit playing the major tournaments, on the
contrary, there is a small group of top-players who perform
many matches against weaker players and among themselves.
This phenomenon is an observation of the rich get richer effect
driven by the attractiveness of the high connected nodes as
opponent for new-comers; an interpretation of the richness
that the players achieve could be their gain of some sort of
"experience" during the matches of their carreer, as already
pointed out in [12].

E. Considerations on Network Nature

Then we came to the most critical point in the analysis
already present in literature on this topic, i.e. the scale-free
nature of the network. A first-step analysis about the network
nature can be done by plotting again the degree distribution
(e.g. the in-degree) and trying to fit it with some typical
network distributions. The results are shown in Figure 7
where we can appreciate the differences among them. The
respective parametric formulations of distributions together
with fitting parameters and the coefficient of determination R2

are reported in Table II. As already noticeable by the presence
of hubs, the network cannot clearly follow a random model
(the poisson one) and some heavy-tailed distributions need to
be considered. The power-law and the Lévy distributions are
the two models performing better on the raw data, thus the
considered network exhibits many properties typical of scale-
free networks.
Assuming the network as power-law, we can measure the
scale-free parameter γ: it is found to be γin ≈ 1.66 for in-
degrees, γout ≈ 2.12 for out-degrees and γundirect ≈ 1.27
for the undirect network, values which are consistent with the
ones found in literature in [13] and [12].

The aforementioned results need to be taken with some
cautions; the network characteristics are quite similar to scale-
free networks (they are even more similar when we restrict
our interest to top-players and/or to top-tournaments only) and
scaling behavior is also suggested by the structural preferential
attachment of new players who generally tend to connect to an
existing player with a probability proportional to the degree of
such node. However if we try to reduce the noise around the
outliers, e.g. by considering the cumulative degree distribution
or a log-binning of the data, we can see that the network is not
a pure scale-free model and it would make sense to limit the
intervals introducing cutoff values kmin and kmax, as carefully
proved in [22] in a general setting. Moreover, as suggested in
[23] we should not rely on the R2 parameter, since it is proved
to achieve very high values also for non scale-free networks.
Summing up: the fit on raw data based on R2 is source of
many errors in current literature about network analysis.

Hence, the Complementary Cumulative Distribution Func-
tion (CCDF) should be considered and it is plotted in Figure 8;
here the issue of the plateau corresponding to values occurring
once has been solved and we can confirm the previous
considerations since power-law networks would describe a

10-4

10-3

10-2

10-1

100

p
k

in

Degree distribution of in-degree and fitting

100 101 102 103

k
in

in-degree

poisson <k>=mean( k
in

 )

exponential =1
power law =1.66

log-normal =-0.14 =1
Weibull a=0.93 b=1.06

Levy =0.39 c=0.57

Figure 7. Fitting trials of raw data of in-degrees, log-log scale.

straight line in a log-log plot.
More specifically, replicating the fitting on the cumulative
distribution, the network can be categorized as a power-law
with an exponential cut-off, i.e. pk ∝ x−αe−

k
β : indeed we

can observe in Figure 8 that the curve starts out as a power
law and ends up as an exponential.
This result confirms that R2 on raw data cannot be trusted and
that, maybe, often is just worth noticing that the distribution
has a heavy tail instead of asserting immediately its scale-free
nature, which is a very widespread practice (many interesting
considerations about networks and fitting techniques can be
read in [23]).
The fact that the complete network is not scale-free is a
quite surprising result, although very clear from the CCDF
plot, because all other related studies on tennis network are
affirming the scale-free nature and are deriving from there the
interesting properties of the network, which is not precisely
correct.
Some power-law networks with coefficient lower than 2 or
not scale-free networks at all have gained a lot of attention
in recent literature, for example in [24] and [25], because
those models have been discovered in many real scenarios
where the number of new links generally grows faster than the
number of new nodes, which is precisely our situation. The
number of annual tennis matches is nowadays very big and
therefore the probability of a new connection is much more
frequent than the new players who join the most important
ATP tour. Thus it may seem that the network should evolve
toward a non-sparse adjacency matrix, which is still not the
case because of structural constraints: is very unlikely that
some pairs of players will face against each other (because of
players’ retirement from the tour or players which are strongly
far apart in ranking) but on the other hand the hubs role of
long-career players will be even reinforced.



pmf or PDF Numerical parameters R2

Poisson pk = e−λ
λk

k!
λ = 〈k〉

Exponential pk = λe−λk λ = 1 0.9879

Power-law pk ∝ k−γ γ = 1.66 0.998

Log-normal pk =
1

xσ
√
2π
e
− (ln(x)−µ)2

2σ2 µ = −0.14 σ = 1 0.9938

Weibull pk = abx(b−1)e−a∗x
b

a = 0.93 b = 1.06 0.9866

Lévy pk =

√
c

2π

e
− c

2(x−µ)

(x− µ)3/2
µ = 0.39 c = 0.57 0.9979

Table II
FITTING DISTRIBUTION APPLIED TO IN-DEGREE RAW DATA.
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F. Clustering Coefficient

Another interesting property of small world network is the
clustering coefficient C. For a node j its clustering coefficient,
Cj , is a number belonging to [0, 1] denoting how many
links there are between its neighboring nodes normalized to
the maximum possible number of links among them; more
formally could be defined as Cj = Ej/Ej,max where Ej is
the number of edges between nodes in the neighborhood of j
(Nj) and Ej,max is its maximum value.
For example, in undirect networks it holds 0 ≤ Ej ≤
Ej,max = |Nj |(|Nj | − 1)/2. Finally, the general clustering
coefficient is expressed as the average over all the N players:

C =
1

N

N∑
j=1

Cj .

In the undirect representation of the network we have found
C = 0.07, which is coherent as order of magnitude with the
values found in [12]; as a term of comparison, in Figure 9 is
reported the clustering coefficient distribution, i.e. the fraction
of nodes having clustering coefficient lower than c.

G. Degree Correlation

Another interesting metric on the network point of view
is the correlation between the degrees of nodes. Degree
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Figure 9. Clustering coefficient distribution of the undirect representation.

correlation can be expressed in many ways, in the following
we are going to examine two of them: the degree correlation
matrix and the assortativity coefficient.
The degree correlation matrix, E, is a square matrix of size
the maximum value of the degrees, max(k). Each entry eij
is the probability of finding a link between two nodes of
degree i and j. The matrix is represented as heatmap for the
undirect and unweighted network in Figures 10 and 11 (the
color differences can be spotted by zooming at them) but we
certainly notice how difficult is the visual inspection and it is
actually impossible to infer anything, in addition to that it is
also high computationally demanding.

For the reasons yet mentioned, usually the Pearson assorta-
tivity coefficient is used as principal investigation method and
is defined as:

r =

∑max(k)
h=min(k)

∑max(k)
f=min(k) hf(ehf − qhqf )

σ2

where qh is the probability of finding a degree-h node at
the end of a randomly picked link, σ2 is the variance of
the degrees and can be proved to be the maximum of the
numerator, thus r ∈ [−1, 1]. Computing this parameter for
the undirect and unweighted network we found r = −0.0076
which means a slightly assortative network and actually almost
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Figure 10. Correlation matrix of degrees from 1 to 220 in the ordinates.
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Figure 11. Correlation matrix of degrees from 221 to max(k) = 449 in the
ordinates.

neutral, probably because hubs and small degree nodes are
likely to play against in the first stages of the tournaments but
also hubs tend to play against themselves in the final rounds,
thus no strong pattern exists.

H. Robustness to Failures

For a more complete characterization of the network struc-
ture we could be interested in its robustness to failures,
i.e. the nodes removal from the network. In our network
a player could be disqualified for doping or other reasons,
or we could need to consider just a subset of players or
matches (restricting by nationality, left or right handedness,
height threshold, tournament level and so on). We want to
determine the robustness of the network in terms of nodes
connected to the giant component when f% of its nodes
has been removed. In the following we are just considering
random removals and attack-based removals since all the other
are mainly application-driven and can be done with a small
effort manipulating the dataset as desired. In the first scenario
considered the nodes are removed entirely at random while in
the second scenario the highest hub in the network is removed
at each step. We introduce the probability that a random node
belongs to the giant component after that f% of nodes have
been removed as P∞(f) and we can look at the relative size of
the giant component: P∞(f)/P∞(0), where P∞(0) represents
the best case of no removals thus the ratio belongs to [0, 1].

The plot of such ratio for the undirect graph is shown in
Figure 12 and we recognize in our network the high robustness
typical to well-connected and scale-free graphs. The black line
corresponds to 1−f and it is an upper limit since for sure we
have removed f% of nodes from the network (and then also
from the giant component).
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Figure 12. Robustness of the undirect network after f% of nodes removals.

IV. CONCLUSIONS AND FUTURE WORK

In this study we have shown how it is possible to map the
ATP single tennis matches into different graph representations;
then we evaluated some metrics typical of those networks and
we compared the results with the existing literature compen-
sating for the lack of structural analysis of the network. Our
future interest is addressed to exploit those network representa-
tions for more practical considerations: for example we would
like to examine some suitable ranking methodologies different
from the official ATP system and eventually to compare them,
as well as to discuss the possibility of some sort of new-
links prediction (i.e. matches between players who have never
faced) and winner prediction power too.
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